CS519: Deep Learning

Winter 2017

Fuxin Li
Course Information

• Instructor: Dr. Fuxin Li
 • KEC 2077, lif@eecs.oregonstate.edu

• TA:
 • Mingbo Ma: mam@oregonstate.edu
 • Xu Xu: xux@oregonstate.edu

• My office hour: TBD (vote)

• Class Webpage: http://classes.engr.oregonstate.edu/eecs/winter2017/cs519-006/

• Questions/Discussions – on CANVAS
Prerequisites

• Significant knowledge on machine learning, especially the generics (not specific algorithms)
 • CS 534 or equivalent knowledge
 • Refresher will be provided in the next lecture

• Some knowledge of numerical optimization
 • 1.5 weeks will be devoted to optimization and also deep network optimization
Grading

• Initial quiz (5%) based on participation only
• 3 Assignments (20%)
 • No late assignments
 • No downloading code from the Internet
• Quizzes (3 more quizzes totaling 30%)
 • Based on whether you answer the questions correctly
• Final Project (45%)
 • Final project is to be done with teams not more than 3 participants
 • Grading will be done according to:
 • Initial proposal (10%)
 • Final oral presentation (10%)
 • Final written presentation (25%)
Materials

• Book:
 • Electronic version: http://www.deeplearningbook.org/

• More readings can be found at:
 • http://deeplearning.net/reading-list/
 • http://colah.github.io/
 • http://karpathy.github.io/
 • https://www.coursera.org/course/neuralnets
Toolboxes

• A plethora of deep learning toolboxes around:
 • Caffe
 • Theano
 • Torch
 • TensorFlow
 • CNTK, MXNet, Lasagne, Keras, Neon, etc.

• Toolbox policy:
 • We stick to Keras for assignments (easiest learning curve)
 • Final project: select the one you are most comfortable with
Outcome

• Understand the concepts of deep learning
• Gain some intuitions on deep networks
• Understand the training of deep learning
• Be able to use at least one deep learning toolbox to design and train a deep network
• Be able to design new algorithms and new architectures
What will be covered

• Basic neural network structure
• Training tricks (SGD, Momentum etc.)
• CNNs
• LSTMs
• Unsupervised neural networks
• Neural reinforcement learning (Dead week)
Final Project

- Groups of no more than 3 persons
- Jointly work on a significant project
 - Must use deep learning
 - CANNOT be just running an already-trained classifier on some images
 - Try to solve a real problem
 - One can elect projects from paper readings
 - I will try to suggest some standard projects
 - New neural architectures/changes to current architectures are welcome
- Grading – based on the project merit, execution and presentation
Project Presentations

• 2 presentations for the final project
 • Initial design (at least 1 month before finals week)
 • Talk about what is your project about
 • What you plan to do
 • Re-grouping if several people are thinking about similar projects
 • Final presentation (finals week)
 • Need to identify who did what in the team

• 8 minutes per presentation
 • Slides uploaded to a common computer
 • Need to schedule 1 additional 2-hour session for it
Computing Resources

• Pelican cluster:
 • 4 nodes with 2 GTX 980 Ti (6GB) each
 • Accessible by SSH at pelican.eecs.oregonstate.edu
 • Policy: 1 GPU per group otherwise risk your jobs be killed

• If you want to buy your own:
 • Website will link you to a good article
 • GTX Titan X PASCAL, GTX 1080 Ti (Mar 2017), GTX 1080, GTX 1070, GTX 1060
 (sorted descendingly by price)
Approximate schedule (will be on website)

- **Week 1 (Jan. 9 - 13)**
 - 1. Admin + General Introduction
 - 2. Machine Learning Refresher (linear algorithms, empirical risk minimization, regularization, support vector machines)

- **Week 2 (Jan. 16 - 20): Standard neural networks**
 - 3. Machine Learning Refresher (unfinished parts) + Basic Neural Networks with Hidden Layer (backpropagation)
 - 4. Optimization Primer #1 (nonconvex optimization, stationary points and saddle points, optima, gradients)

- **Week 3 (Jan. 23 - 27): Convolutional Networks**
 - 5. Convolutional Neural Networks (mostly in computer vision)
 - 6. Continued CNN, Visualization of CNN

- **Week 4 (Jan. 30 – Feb. 3): Temporal Neural Models**
 - 7. Introduction of deep learning toolboxes (Caffe, Keras, automatic gradients)
 - 8. Temporal Neural Models (RNNs and LSTMs)

- **Week 5 (Feb. 6 – Feb. 10): Deciding what project to work on**
 - 9. Continued Temporal Neural Models (LSTMs, GRUs, stacked together with CNNs)
 - 10. An overview of other neural models

- **Week 6 (Feb. 13 - 17): Project proposals**
 - 11. Project Proposals
 - 12. Neural Network Optimization (stochastic mini-batch gradient descent, momentum, dropout, learning rate and weight decay)
Approximate schedule

• Week 7 (Feb. 20 - 24): Neural Network Optimization, Unsupervised Approaches
 • 13. Neural Network Optimization (stochastic mini-batch gradient descent, momentum, dropout, learning rate and weight decay, automatic step-size methods)
 • 14. Unsupervised Deep Learning (Autoencoders)

• Week 8 (Feb. 27 – Mar. 3): Unsupervised Approaches, NLP applications
 • 15. Unsupervised Deep Learning II (GANs)
 • 16. Deep Learning in Natural Language Processing (Guest lecture from the Algorithms for Computational Linguistics group)

• Week 9 (Mar. 6 - Mar. 10): Deep Learning Frontiers
 • 17. ResNet and New Architectures
 • 18. Restricted Boltzmann Machines and Deep Belief Networks, convolutional DBN

• Week 10 (Mar. 13 - Mar. 17): Deep Reinforcement Learning
 • 19. Deep reinforcement learning (guest lecture by Alan Fern)
 • 20. Deep reinforcement learning (guest lecture by Alan Fern)

• Week 11 (Mar. 20 - Mar. 24): Finals Week
 • 21. Project Presentations
 • 22. Project Presentations