
Assignment 5
Due: Sunday, 4 March 2018, 11:59 PM on TEACH as a .cpp

Farkle

Background
Farkle is a dice game designed for two or more players. Gameplay consists of throwing six dice
and gaining points based on single rolls or special combinations of dice rolls described below.
When the first player reaches 10,000 points, each other player gets one more turn to attempt to
beat the first player’s score. After this special set of turns is taken, the player with the top score
wins.

In order to get on the scoreboard, you must have a running total of at least 500 points before you
stop rolling. Once a player is on the scoreboard, they may choose to stop rolling at any time
during their turn. Once a player chooses to finish a sequence of rolls, their score is added to the
scoreboard and their turn ends.

Each turn starts by rolling all six dice. After each roll, set aside the dice that are worth points and
roll the rest. You must remove at least one die or combination of dice that are worth points after
each roll while keeping a running total of your points for the turn. If you are able to set aside all
six dice, you can roll the dice again to start the process over and build up additional points or you
can keep the points you have and end your turn. If you can not set aside any dice after a roll, this
is called a “Farkle”. When a Farkle occurs, points are not added to the scoreboard and play
passes to the next player. A Farkle may happen on the first roll or any subsequent rolls.

Here is an example of the game: ​https://www.youtube.com/watch?v=zpdHZ8AUAtQ

(Instructions continue on the next page)

https://www.youtube.com/watch?v=zpdHZ8AUAtQ

Scoring

Single 1 = 100 Four of any number = 1,000

Single 5 = 50 Five of any number = 2,000

Three 1’s = 300 Six of any number = 3,000

Three 2’s = 200 1-6 straight = 1,500

Three 3’s = 300 Three pairs = 1,500

Three 4’s = 400 Four of any number with a pair = 1,500

Three 5’s = 500 Two triplets = 2,500

Three 6’s = 600

Implementation Requirements
· Must produce a working program that implements the game play described in the
Background and Scoring section of this document.
· Rand() should be used to simulate the dice rolls.
· All functions should be 15 lines or less. Whitespace, single curly braces, and the function
header do not count.
· Use of one dimensional arrays is required.
· Use of references and pointers is required.
· The user should see their running score total for their turn at all times.
· The user should be able to choose which dice to remove from the rolls during their turn.
· Error handling for all user input should be implemented.
· The scoreboard for all players should be displayed at the end of each turn.
· The program should always state whose turn it is.
· The program should allow as many players as the user request, but there should be a
minimum of two.
· No memory leaks allowed (see valgrind).
· No global variables allowed.
· No segmentation faults allowed.

(Instructions continue on the next page)

Grading
 Design to be submitted to recitation.
 Implementation: 80 pts
 Auto deductions:
 Memory Leak: -10 pts
 Global Variables: -10 pts
 Segmentation Faults: -10 pts
 Style and Code Quality: 20 pts
 Extra Credit: 10 pts

Extra Credit
Log all testing activity that you conduct on your program. You should produce a table as
follows:

Date
and
Time

Function
or
Procedure
Being
Tested

Preconditions
to get to
testing
scenario

Expected
Post
Conditions

Actual
Post
Conditions

Hypothesis
on the
cause of
the issue

How
the
issue
was
fixed

… … … … … … …

Note, this is not the same as the testing table you normally produce for your recitation designs.
This is a log of all the issues you’ve encountered in developing your program and how you fixed
these issues. By recording what goes wrong, you should be able to better recognize common
mistakes and identify how to fix them quickly. This table should span multiple pages for this
program.

