
CS 161, Lecture 1: C++, Data Types, Variables,
Constants – 10 January 2017

C++

• High level language -> not binary

• Language is compiled into binary for the computer to understand

• How to do this conversation:
• Create cpp file -> vim my_file.cpp

• Add some code to file (basic boiler plate)

#include <iostream>

using namespace std;

int main() {

//my awesome code goes here

cout << “Line of code that prints this line to the screen.” << endl;

return 0;

}

Running Your Program Continued

• Save your file -> <Esc> :wq

• Compile your program -> g++ my_file.cpp –o my_file_exe

• Run your program -> my_file_exe

Break Down of the Boiler Plate

Library: imports functions, macros, etc. other people wrote to take care of things for you

Namespace: provides a grouping for identifiers and prevents name conflicts with libraries

Function Main: the function the g++ compiler looks for to start your program

// this is a comment, this is not read by the compiler

the rest is awesome code contained in the function

More About Comments

• // single line comment

• /* Block comment, can be spread across

Multiple lines */

• Why comment?
• To help you outline/mark your code when developing (remove these later)

• To help others understand particularly complex pieces of code

• To orient someone to your program/code

Commenting and Style for this Class

• There is a style guide -> find it on the website

• For now you should include program headers

/**

** Program: my_file.cpp

** Author: Shannon Ernst

** Description: example boiler plate which prints a line

** Input: None

** Output: text to screen

**/

String Literals and Escape Sequences

• String literals are denoted with quotes “”
• Correct -> cout << “Hello World” << endl;

• Incorrect -> cout << ‘Hello World’ << endl;

• Incorrect -> cout << “Hello

World” << endl;

• Escape characters to display special characters
• Denoted with \

• Example newline: cout << “Hello World \n”;

Data Type

• Data: information -> literal, variable, file, etc.

• Data type: description of the kind of information
• Primitive: Int, Float, Double, Long, Short, Char, Bool

• User defined: objects, classes -> dealt with in CS 162

• Basics:
• int: whole numbers ex: 42, -7, 0

• double: real numbers ex: 3.14, -237.15, 6.0221409e+23

• char: characters ex: ‘A’, ‘!’, ‘f’, ‘\’

• Signed (negative and positive), Unsigned (positive including zero)

Variables

• Location in memory
• Has name – can be anything ex: my_num, bob, x, horriblyLong_and_bad

• Has type – see data types, indicates how much space needs to be carved out

• Declaration
• Statement requesting that memory be carved and named accordingly

• Ex:
• int number_of_students;

• char letter_grade;

How to Name

• Names also known as identifiers are given to variables and function

• Start with letter: upper case, lower case, underscore

• Followed by sequence of letters and digits
• Good: myVar, result_of_eq1, _hello

• Bad: 1234, my-Var, 2eq_res

• Can’t use keywords

Assigning Values to Variables

• Point of variables is to hold data

• Declare a variable
• int my_num;

• Use ‘=‘ followed by the data you want to store (data must be same
type as what was declared)
• my_num = 5;

• ‘=‘ is the assignment operator not a test for equivalence
• say my_num “is assigned” or “gets” 5

• Can declare and assign on same line
• int my_num = 5;

Printing Variables

• cout << “The result is: “ << result << endl;

• Alters out stream

Constants

• Constants do not change

• Two ways to create a constant
• Define a macro

• At top of program, no semicolon

• #define MAX_SIZE 10000

• MAX_SIZE will always be 10000 through out the entire program

• Use const keyword
• Same as declaring variable

• const int MAX_SIZE 10000;

Predefined Macros

• Some macros already exist for things, typically import in library

• C++: <limits>

• Use MIN and MAX

