CS 161, Lecture 5: Strings — 22 January 2013

AND STARTING TODAY,
ALL PASSWORDS MUST
CONTAIN LETTERS,
NUMBERS, DOODLES,
SIGN LANGUAGE AND
SQUIRREL NOISES.




Review Exercise

* Define:
e Variable
* Primitive Types
* Conditional
* Relational operator

* True/False
* if(x = 34) tests to see if x is equal to 34
* The number of bytes of memory used by a variable depends on its value.
* A memory address is where a variable is stored.



Review Exercise

* If the user provides 1, what will print to the screen?

ﬁaccess.engr.orst.edu - PuTTY

#include <iostream>
namespace std;

int main () {
int num = 0;
cout << "Give me a number: ";
cin >> num;

(num) {
1:

cout << "Go left" << endl;
2:

cout << "Go right" << endl;

cout << "What ran?" << endl;



Review Exercise

* What does this code output?

g'acces&engr.orstedu - PuTTY

#include <iostream>
namespace std;

int main () {
int x = 0;
(x == |1 1) {

cout << "The number is 1 or 2"

<< endl;

cout << "The number is not 1 or 2" << endl;

0;



String

e C++ style strings are objects (revisit in 162)

* Come from <string>

* Allows us to take in more than numbers or single entities
e Examples:

e “Hello world” ->| H e I I o W o

* “123 456 789"
° ((a b C”



Use getline

* There are two getline functions

e <string> getline -> takes the istream, takes the string variable, extracts until
delimiter or \n (newline)

* <istream> getline -> c-string (week 77?)
e Use the one in the <string> library
* Example
string my_str=“";
cout << “Give me a string: “;

getline(cin, my_str);



Why are strings cool?

* Most user interfaces don’t operate purely on numbers
e Can store more info (baby step into arrays -> week 6)
* Can do more interesting things such as error handle

* It’'s an object so more functionality



Demo



