
CS 161, Lecture 10: Detailed Functions – 2 
February 2018



Complete Binary Conversion Program









Function Scope

• Similar to conditionals and loops, functions have a defined scope
• Local variables: variables declared in a scope only exist with in that 

scope therefore are of limited accessibility
• Global variables: variables declared in the global scope and therefore 

accessible by everything



Scope Issues: what is wrong here?

void compute_sum();
int main () {

int x=2, y=3;
compute_sum();
sum = x+y;
return 0;

}
void compute_sum() {

int sum = x+y;
}



Default Arguments
• If an argument is omitted it can be replaced with a default argument
• Only use for call-by-value parameters (more details on week 6 but this 

is what we are currently doing)
• Default arguments are defined the first time the function is declared 

or defined, must be in rightmost position
int sum (int a, int b = 1);
int sum (int a, int b) {

return a+b;
}
• Assumes omission of rightmost argument



Overloading Functions

• Two or more function definitions for the same name
• Ex: 
int sum (int a, int b) {

return a+b;
}
int sum (int a, int b, int c) {

return a+b+c;
}
• In order for the compiler to know the difference:

• Need different amount of parameters
• Need different data types on the parameters
• Different return values will NOT be enough



Overloading Functions Continued

• Compiler decides based on the following:
• Exact match: if the number and types of arguments exactly match a definition 

(without any automatic type conversion), then that is the definition used
• Match using automatic type conversion: if there is no exact match but there is 

using automatic type conversion, then the match is used
• Ambiguity:
void f (int n, double m);
void f (double n, int m);
f (98, 99);

*Savitch, Walter. Absolute C W/ MyProgrammingLab, 5th Edition . 5th ed. 
Boston, MA: Addison-Wesley , 2012.



Demo


