CS 161, Lect

ure 13: Recursion

YOUR PARTY ENTERS THE TAVERN.

I GATHER EVERYONE AROUND
A TABLE. I HAVE THE ELVES
START WHITTLING DICE AND
GET QUT SOME PARCHMENT
FOR CHARACTER SHEETS.

\ HEY, NO RECURSING.

/

What is Recursion?

* When a function calls itself one or more times (directly or indirectly)
* Form of repetition

» Typically used to perform same operation on a smaller subset and
then build the result based on what is returned from the smaller case

* Typically has at least one base case for stopping
* Based on inductive logic

Ilteration vs. Recursion

* Anything that can be done iteratively can be do recursively and vice
versa

* Not always a good idea, some problems naturally lend themselves to one
mode of thinking or the other

summation(listOfNumbers[O0...n])
if n==

return listOfNumbers[O] .
return listOfNumbers[0] + summation(listOfNumbers[1...n]) ’] |g h | eve ‘

How it works on a

—{ summation([1,2,3])

—treturn 1 + summation([2,3])

v

N\
if2==0X

return listOfNumbers[0]

5

if1==0X

return 2 + summation([3])

return listOfNumbers[0]

3

if0==0
return 3
return listOfNumbers[0] + summation(listOfNumbers[1...n])

Pros and Cons

* Pros
* Readable
* Sometimes easier to conceptualize for problems that have many moving parts

* Cons
e Efficiency

* Memory usage
e Each call to the function makes a new function stack frame (see previous slide)

Example: Factorial

* The product of an integer and all that come before it
en!l=n*(n-1) *(n-2) *.. *(n-(n-1)) *1foralln>0

e Base Case: 0l =1

Iterative Factorial

int factorial(int n) {
int fact;
if (n == 0)
fact=1;
else
for (fact=n; n>1; n--)
fact = fact * (n-1);
return fact;

Recursive Factorial

int factorial (int n) {
if (n ==0)
return 1;
return n * factorial(n-1);

Code Demo

