
CS 161, Lecture 13: Recursion



What is Recursion?

• When a function calls itself one or more times (directly or indirectly)

• Form of repetition

• Typically used to perform same operation on a smaller subset and 
then build the result based on what is returned from the smaller case

• Typically has at least one base case for stopping

• Based on inductive logic



Iteration vs. Recursion

• Anything that can be done iteratively can be do recursively and vice 
versa
• Not always a good idea, some problems naturally lend themselves to one 

mode of thinking or the other



summation(listOfNumbers[0…n])
if n == 0

return listOfNumbers[0]
return listOfNumbers[0] + summation(listOfNumbers[1…n])

summation([1,2,3])

if 2 == 0 X
return listOfNumbers[0]

return 1 + summation([2,3])

if 1 == 0 X
return listOfNumbers[0]

return 2 + summation([3])

if 0 == 0 
return 3

return listOfNumbers[0] + summation(listOfNumbers[1…n])

6

3

5

6

How it works on a 
high level



Pros and Cons

• Pros
• Readable

• Sometimes easier to conceptualize for problems that have many moving parts

• Cons
• Efficiency

• Memory usage
• Each call to the function makes a new function stack frame (see previous slide)



Example: Factorial

• The product of an integer and all that come before it

• n! = n * (n-1) * (n-2) * … * (n-(n-1)) * 1 for all n > 0

• Base Case: 0! = 1



Iterative Factorial

int factorial(int n) {

int fact;

if (n == 0) 

fact = 1;

else

for (fact = n; n > 1; n--)

fact = fact * (n-1);

return fact;

}



Recursive Factorial

int factorial (int n) {

if (n == 0) 

return 1;

return n * factorial(n-1);

}



Code Demo


