
CS 161, Lecture 14: Different Ways to Pass
Parameters

How We Have Been Passing -> By Value
• Also referred to as Call by Value
• Copies the value into the formal parameter
void swap (int a, int b) {

int temp = a;
a = b;
b = temp;

}
int main () {

int a = 1, b = 2;
swap(a, b);
cout << “a: “ << a << “b: “ << b << endl;

}

Alternate: Pass By Reference
• Takes both the value and the address of the passed in variable

• Does not exist in C

• References can’t be null

void swap (int & a, int & b) {

int temp = a;

a = b;

b = temp;

}

int main () {

int a = 1, b = 2;

swap(a, b);

cout << “a: “ << a << “b: “ << b << endl;

}

Alternate: Pass By Pointer
• Pointer is a memory address

• Can be changed to hold different memory addresses

• Pointers need to be dereferenced to get to the value stored at that address

void swap (int* a, int* b) {

int temp = *a;

*a = *b;

*b = temp;

}

int main () {

int a = 1, b = 2;

swap(&a, &b);

cout << “a: “ << a << “b: “ << b << endl;

}

Pointer Cheat Sheet

• *
• If used in declaration (which includes function parameters), it creates the pointer

• Ex: int *p; // p will hold an address to where an int is stored
• If used outside a declaration, it dereferences the pointer

• Ex: *p = 3; //goes to the address stored in p and stores a value
• Ex: cout << *p; //goes to the address stored in p and fetches the value

• &
• If used in a declaration (which includes function parameters), it creates and initializes

the reference
• Ex: void fun(int &p); //p will refer to an argument that is an int by implicitly using *p

(dereference) for p
• Ex: int &p = a; //p will refer to an int, a, by implicitly, using *p for p

• If used outside a declaration, it means “address of”
• Ex: p=&a; //fetches the address of a (only used as rvalue) and store the address in p

Demo

