
CS 161, Lecture 16: 1D Arrays – 19 February 2018

Tip: everything is more difficult in 
the last half of the term. If you are 
stuck on a problem for a 
significant amount of time, try 
walking away and go engage in 
something you enjoy, then come 
back to it. Your brain will still be 
working on it without you actively 
thinking and your new approach 
will likely be better than your last.

18 February 2018: Brice Creek Trail



Arrays

• An order arrangement of related items
• Colloquially called lists

• Caution: lists are an actual data structure that behave differently from arrays

• Examples
• Array of numbers such as in a gradebooks
• Strings -> array of characters



Creating 1D Arrays (Statically)

int grades[5];

Access Each Element:
Array name represents:
Initial Values:

0 1 2 3 4



Initializing and Populating Static 1D Arrays

Declaration
int grades[5] = {0,0,0,0,0};

Individual Elements
grades[0] = 0;
grades[1] = 0;
grades[2] = 0;
grades[3] = 0;
grades[4] = 0;



Populating 1D Arrays with Loops

int grades[5];
for(int i = 0; i < 5; i++)

grades[i] = 0;
Or
int i = 0;
while (i < 5){

grades[i] = 0;
i++;

}



Read and Print

int amount = 5;
int grades[amount];
for(int i = 0; i < amount; i++){

cout << “Please input a grade: “;
cin >> grades[i];

}
for(int i=0; i<amount; i++)

cout << “Grade “ << i << “: ” << grades[i] << endl;



Static vs. Dynamic Arrays

• Static: use when the size will not change
int grades[5];

• Dynamic: use when you do not know how big the array needs to be at 
compile

int* grades = new int[5];



Demo






