
LAB 9

Each lab will begin with a recap of last lab and a brief demonstration by the TAs for the
core concepts examined in this lab. As such, this document will not serve to tell you
everything the TAs will in the demo. It is highly encouraged that you ask questions and
take notes. In order to get credit for the lab, you need to be checked off by the end of lab.
For non-zero labs, you can earn a maximum of 3 points for lab work completed outside of
lab time, but you must finish the lab before the next lab. For extenuating circumstance,
contact your lab TAs and Instructor.

Towers of Hanoi is a simple puzzle that we’re going to be using as practice for recursion and 2D
arrays. The puzzle itself is very simple– it consists of three pegs arranged from left to right, and
some number of disks N of different sizes. To begin, the N disks are placed on the rightmost
peg in order of their size, with the largest disk at the bottom of the peg. The puzzle’s goal is to
finish with the disks arranged in the same order (biggest on the bottom, smallest on the top) on
the leftmost peg. Of course, you can’t just move the disks however you want! You can only
move one disk at a time by taking it off the top of its peg and putting it onto another peg.
Additionally, you’re not allowed to place a disk on top of another disk that’s smaller– that is,
every disk must be smaller than every disk beneath it on the peg.

Recitation Feedback

We would love for you to give us feedback about the peer-led, peer to peer recitations! Please
take a few minutes at the beginning of lab to complete this survey:

http://oregonstate.qualtrics.com/jfe/form/SV_8jPq5P2yMAeoIpD
You can find out which recitation section you are in by visiting the Recitation Page.

Statically Allocated 2-D array (5 pts)

First, you can implement this is using a static 2-D array with 3 columns for the 3
posts and 3 rows, and you can initialize the array with the numbers 1, 2, and 3 in the
first column to represent the initial state of the game. The goal is to print out the board
after each move in the game, seeing the following output. Example with two disks:

1 0 0
2 0 0

0 0 0
2 0 1

0 0 0
0 2 1

0 1 0
0 2 0

http://oregonstate.qualtrics.com/jfe/form/SV_8jPq5P2yMAeoIpD
http://classes.engr.oregonstate.edu/eecs/winter2018/cs161-001/recitations/

Begin by designing these two functions, towers() and print_array(). To help you
out, your towers() function will be recursive with the following prototype:

void towers(int disks, int b[][3], int from_col, int to_col, int spare);

Here is an outline of the recursive towers function:

If(number of disks is >= 1)
 Call Towers with (disks-1, b, from_col, spare, to_col)
 Move the disk
 Print the board
 Call Towers with (disks-1, b, spare, to_col, from_col)

Dynamically Allocated 2-D array (5 pts)

Next, implement this is using a dynamically allocated 2-D array with 3 columns for the
3 posts and N rows for N disks. Get the number of disks from the user as a
command-line argument, i.e. towers 5.

Continue to initialize the array with the numbers corresponding to the disks in the first
column and 0s in all other columns to represent the initial state of the game. You
should now see the above example output, given 2 for the number of disks.

Remember to change your towers() and print_array() function parameters to
accept dynamically allocated arrays, rather than statically allocated. To help you
out, your towers() function will be change to the following prototype:

void towers(int disks, int **b, int from_col, int to_col, int spare);

Make sure you delete your board after calling the towers function.

Create/Delete Functions for Dynamically Allocated 2-D array

If you haven’t done so already, create functions for creating and deleting the array on
the heap. Make sure you set the board back to null in the delete function!

Run your program through valgrind to make sure you do not have any memory
leaks!!!

