1. **Reductions**
 Let \(A \leq B \) for two problems \(A \) and \(B \) mean that problem \(A \) can be solved in \(\bigO \) of the time it takes to solve problem \(B \).

 (a) Show that \(\text{MULTIPLICATION} \leq \text{SQUARING} \).
 (b) Show that \(\text{SQUARING} \leq \text{MULTIPLICATION} \).
 (c) Show that \(\text{SQUARING} \leq \text{RECIPROCAL} \).
 (d) If \(A \equiv B \) means \(A \leq B \) and \(B \leq A \) which of \(\text{MULTIPLICATION}, \text{SQUARING}, \) and \(\text{RECIPROCAL} \) are equivalent?

 HINT: \(\frac{1}{x} - \frac{1}{y} = \frac{y-x}{xy} \). Try \(y = x + 1 \).

2. **Lucas Numbers:**
 INPUT: A \(K \) bit number \(X \).
 QUESTION: Is \(X \) a Fibonacci number?
 The Lucas numbers are defined by the recurrence
 \[L_n = L_{n-1} + L_{n-2} \]
 with the initial conditions: \(L_0 = 2, \ L_1 = 1 \)
 Show that this problem is in \(\mathcal{P} \) by outlining (NO CODE, just explain what you’re doing) an algorithm, AND showing that your algorithm runs in polynomial time in \(K \), the number of bits.

3. **Roots:**
 Without finding the solutions, show that \(x^2 - x - 1 = 0 \) has:
 (a) NO positive integer solutions
 (b) NO rational solutions
 HINTS:
 i. Assume that \(x = \frac{p}{q} \) where \(p \) and \(q \) are integers with no common factors.
 ii. \(p^2 - q^2 = (p - q)(p + q) \).
 iii. Each integer is either ODD or EVEN.

4. **Average Case:**
 Do Exercise 5.5 in the NOTES on page 61.

5. **Lower Bound:**
 Exercise 6.1 in the NOTES on page 71, is about the lower bound of \(\frac{3}{2} n - 2 \) comparisons to find the largest and smallest elements in an array. Devise a divide-and-conquer algorithm for this problem and show that the number of comparisons used by your algorithm achieves this lower bound.
6. **Boolean Expression:**
Assume that you have an algorithm $\text{YS}()$ so that when you input a Boolean expression $E(x_1, \ldots, x_n)$ into $\text{YS}()$,
$\text{YS}(E)$ outputs YES if E is satisfiable, and $\text{YS}(E)$ outputs NO if E is not satisfiable.

(a) Show how to use $\text{YS}()$ to construct an algorithm $\text{FIND}(D(x_1, \ldots, x_n))$ which when given a satisfiable Boolean expression $D(x_1, \ldots, x_n)$, returns an assignment $x_1 = a_1$, $x_2 = a_2$, \ldots, $x_n = a_n$, so that $D(a_1, \ldots, a_n)$ is TRUE.

(b) Assume that $\text{YS}(D(x_1, \ldots, x_n))$ has run time $\mathcal{O}(n^k)$ and find the run time of $\text{FIND}(D(x_1, \ldots, x_n))$.

7. **Platonic Hamiltonian Circuits:**
Show that each of the PLATONIC solids has a Hamiltonian circuit.

8. **s-t Hamiltonian Path:**
INPUT: A graph G and two specified vertices s and t.
QUESTION: Does G have a Hamiltonian Path which starts at s and ends at t?

(a) Assume that you know that Hamiltonian Circuit is \mathcal{NP}–Complete, show that s-t Hamiltonian Path is \mathcal{NP}–Complete.

(b) Assume that you know that s-t Hamiltonian Path is \mathcal{NP}–Complete, show that Hamiltonian Circuit is \mathcal{NP}–Complete.

(c) Show that the Yes/No version of TSP (Traveling Sales Person) with all edge weights in $\{1, 2\}$ is \mathcal{NP}–Complete. (You should assume that Hamiltonian Circuit is \mathcal{NP}–Complete.)

9. **Graph Isomorphism:**
Graph isomorphism is an example of a problem which is in \mathcal{NP}, but is not known to be \mathcal{NP}-complete, nor is it known to be in $\text{co-}\mathcal{NP}$.

INPUT: Two graphs, $G_1 = (V_1, E_1)$ and $G_2 = (V_2, E_2)$.
QUESTION: Can the vertices of G_1 be renamed so that G_1 becomes G_2? (Is there a one-to-one onto function $f : V_1 \rightarrow V_2$ so that $\forall x, y \quad (x, y) \in E_1 \text{ iff } (f(x), f(y)) \in E_2$?

Show that GRAPH ISOMORPHISM is in \mathcal{NP}.
10. **Canonical Number:**
A graph with n vertices can be represented as an $n \times n$ binary matrix which has a 1 in position (i, j) if and only if there is an edge (v_i, v_j). If you “unroll” this matrix (say by rows), you will have a vector of n^2 bits and you can consider this to be a number in standard binary notation. So, there is a correspondence between n vertex graphs and n^2 bit numbers. If we re-label the vertices of the graph, we don’t change the graph properties. Different re-labelings of the graph will (usually) give different numbers. Clearly among all re-labelings of the graph, there is some re-labeling which gives the smallest value for this binary number. We would like to represent a graph by the minimum number we can get by re-labeling. We’ll call this minimal number the canonical number of the graph. It’s easy to see that two graphs are isomorphic iff they have the same canonical number.

(a) The graph $v_1 - v_2 - v_3$ is isomorphic to $v_1 - v_3 - v_2$ and is also isomorphic to $v_2 - v_1 - v_3$.
Find the canonical number of $v_1 - v_2 - v_3$.

(b) Show that if finding the canonical number of a graph is easy, then GRAPH ISOMORPHISM is easy. (Here, easy means takes polynomial time.)
However, canonical number may be harder than GRAPH ISOMORPHISM. If I can tell that two graphs are NOT isomorphic, I know that their canonical numbers are different, but I don’t know what their canonical numbers are. Further, if I know that two graphs are isomorphic, I know that their canonical numbers are identical, but again I don’t know what these canonical numbers are.

(c) **Is-Canonical:**

INPUT: A graph G and an integer I.
QUESTION: Is $I < \text{the canonical number of } G$?
EXERCISE: Show that IS-CANONICAL is in co-\mathcal{NP}.

11. **Tautology:**

INPUT: A Boolean Expression $E(x_1, \ldots, x_n)$.
QUESTION: Does E evaluate to TRUE for each and every assignment of TRUE and FALSE to the variables, the x’s ?

Show that TAUTOLOGY is co-\mathcal{NP}-complete.

12. **3-SAT:**

INPUT: A Boolean Expression $E(x_1, \ldots, x_n)$ in Clause form with at most 3 literals per clause.
QUESTION: Does E evaluate to TRUE for some assignment of TRUE and FALSE to the variables, the x’s ?

Show that if SAT is \mathcal{NP}-complete, then 3-SAT is \mathcal{NP}-complete.