Fault Tolerance

CS 447– Wireless Embedded Systems
Outline

• Overview
• Mechanisms for Fault Tolerance
• Disjoint Multipath
• Braided Multipath
• Retransmission
• Replication
Overview

• Focus on fault tolerant routing protocols

• Multipath routing should be designed to handle if / when nodes go down
Overview

Wireless sensor networks of unique constraints

- Energy consumption
- Node deployment
- QoS – Quality of Service
- Data Aggregation
- Node Mobility
Overview

Careful resource management is critical

A node or link could fail due to:
• Limited battery
• Hardware malfunction
• Communication errors
• Malicious attacks
Overview

A single failure could affect entire WSN

Routing protocols should be designed to provide fault tolerance
 • And needs to be scalable

This lecture: focus on using multipath routing to increase WSN reliability..
Outline

• Overview
• **Mechanisms for Fault Tolerance**
• Disjoint Multipath
• Braided Multipath
• Retransmission
• Replication
Mechanisms for Fault Tolerance

Fault tolerance – ensures system is available for use without interruption in the presence of faults

Fault tolerance increases system:
• Reliability
• Availability
• Dependability
Mechanisms for Fault Tolerance

Multipath routing is most popular to provide fault tolerance
• Set of multiple paths between source and sink nodes
Mechanisms for Fault Tolerance

Multipath routing tradeoffs:
• Increased power consumption
• Increased network traffic

Benefits:
• Load balancing
• Bandwidth aggregation
Mechanisms for Fault Tolerance

Three types of multipath routing methods

1. Paths *precomputed*, stored in routing table
2. Reactive routing- paths created *on demand*
3. Hybrid- mix of both
Mechanisms for Fault Tolerance

How to establish paths:

- Disjoint multipath
- Braided multipath
Outline

• Overview
• Mechanisms for Fault Tolerance
• **Disjoint Multipath**
• Braided Multipath
• Retransmission
• Replication
Disjoint Multipath

- Construct number of alternate paths
- Nodes (and links) disjoint with primary path
- Any failure on primary path will not harm alternatives
Disjoint Multipath

But...

- Alternate paths may require more energy (more hops)
- Requires global knowledge of network topology
Disjoint Multipath

S

primary path

D
Disjoint Multipath

S

D

primary path
alternate paths
Disjoint Multipath

If node in **primary path** goes down, packet can still reach destination.
Outline

- Overview
- Mechanisms for Fault Tolerance
- Disjoint Multipath
- Braided Multipath
- Retransmission
- Replication
Braided Multipath

• Construct alternate path for each node in primary path
• Alternate paths in a braid partially overlay primary path
• Not as expensive as disjoint
• Provides alternative if node in primary path fails
Braided Multipath

But...

• If most or all nodes in primary path fail, new path discovery is required
• Can be costly
Braided Multipath

S

D

primary path
Braided Multipath

S

primary path
alternate path

D

February 13, 2018
Braided Multipath

There should be an alternate route for each node in primary path.
Braided Multipath

If node in primary path goes down, packet can still reach destination.
Outline

- Overview
- Mechanisms for Fault Tolerance
- Disjoint Multipath
- Braided Multipath
- Retransmission
- Replication
Retransmission

- Most popular method
- *Retransmit data packets to destination*
- Use one of multiple paths
- Try to minimize hop count or energy consumption
Retransmission

- Retransmit a predetermined number of times

Basic premise:
- Destination sends ACK to sender
- Sender does not receive ACK before timeout
- Data transmitted via another path
Retransmission

Drawbacks:
• Increased network traffic
• Transmitting ACK back to sender may increase:
 • Delivery delay
 • Packet loss due to collisions

• Requires more memory per node
 • Must buffer new packets until ACK received
Retransmission

Example algorithm: *Energy Efficient Multiple Routing Protocol for WSNs*

- Uses *directed diffusion* to create routing table
- WSN finds several *braided multipaths*
- WSN picks primary path between source and destination
- If failure in primary path, node recovers by retransmitting along another path
- How to detect failure? Sender does not receive ACK
Aside: **directed diffusion**

- Destination sends “interest” packet
- Received interest packet flooded to all neighbors
- Each receiver generates a *gradient* (direction where interest packet came from)
- Information used to create routing table
Aside: **directed diffusion** (cont’d)

- Source sends dummy packet along multiple paths
- Reaches destination (from multiple paths), destination picks one route (e.g., with fewest hops)
- Path will be reinforced to use with sensor data
Outline

- Overview
- Mechanisms for Fault Tolerance
- Disjoint Multipath
- Braided Multipath
- Retransmission
- Replication
Replication

• Introduce redundancy into packet delivery
• One method- transmit multiple copies of same packet along different paths

Drawbacks:
• Increased overhead when packet Tx through each node
• Each node must maintain path state
• Not adaptive to channel errors
Replication

Another method- _erasure coding_

- Source decodes packet (size bM bits) into
- M fragments each of size b
- Generates another K coding fragments
- M + K total fragments
- Fragments sent as sub packets \(x_1, x_2, \ldots, x_n \) for n paths from source to destination
Replication

Erasure coding (cont’d)

• Allocation of fragments on each path determined by load balancing algorithm where

\[\sum_{i=1}^{n} x_i = M + K. \]

• At least M fragments must be received by destination to reconstruct original packet
• At most K fragments can be lost
Erasure coding (cont’d)

• Several algorithms that provide erasure coding
 • Reed—Solomon codes
 • Rateless codes
 • (Similar to how RAID 5 and 6 work)

• Erasure coding is more reliable and energy efficient than retransmission
Replication

\[
\sum_{i=1}^{n} x_i = M + K
\]

\[
\sum_{i=1}^{n} z_i \geq M
\]

Data fragments
Parity fragments
Replication

Example algorithm: ReinForm (Reliable Information Forwarding)

- Destination periodically broadcasts routing update packet to network
- Each node knows: its neighbors and # hops to destination
Replication

ReinForm algorithm (cont’d)

• Source has data to send, generates packet with some level of desired reliability

• Depending on reliability parameter by source, multiple copies of data packet created and sent on multiple paths to destination

• Number of multipaths function of reliability parameter
Replication

ReinForm algorithm (cont’d)
• Each intermediate node uses reliability information to determine:
• Number of copies to make
• Number of multipath to forward packet
• Which neighbors to forward packet to
Replication

ReinForm algorithm (cont’d)

• Process continues until packet reaches destination

Fault tolerance:

• Multiple copies of same packet sent over randomly chosen paths to destination

• Duplication not only at source node, but every intermediate node in WSN
Replication

ReinForm algorithm (cont’d)

Drawbacks-
• High energy consumption
• Packet is copied, transmitted, and reconstructed among each node in WSN