Dynamic Programming 101

- DP = recursion (divide-n-conquer) + caching (overlapping subproblems)
Dynamic Programming 101

- DP = recursion (divide-n-conquer) + caching (overlapping subproblems)
- the simplest example is Fibonacci
Dynamic Programming 101

- DP = recursion (divide-n-conquer) + caching (overlapping subproblems)
- the simplest example is Fibonacci

\[f(n) = f(n - 1) + f(n - 2) \]
\[f(1) = f(2) = 1 \]

```python
def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)
```
Dynamic Programming 101

• DP = recursion (divide-n-conquer) + caching (overlapping subproblems)

• the simplest example is Fibonacci

\[f(n) = f(n - 1) + f(n - 2) \]
\[f(1) = f(2) = 1 \]

```python
def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)
```
Dynamic Programming 101

- DP = recursion (divide-and-conquer) + caching (overlapping subproblems)

- the simplest example is Fibonacci

\[
f(n) = f(n - 1) + f(n - 2) \\
f(1) = f(2) = 1
\]

```python
def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)
```

naive recursion without memoization: \(O(1.618...^n)\)
Dynamic Programming 101

• DP = recursion (divide-n-conquer) + caching (overlapping subproblems)

• the simplest example is Fibonacci

\[f(n) = f(n - 1) + f(n - 2) \]
\[f(1) = f(2) = 1 \]

```
def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)
```

```
def fib1(n):
    if n not in fibs:
        fibs[n] = fib1(n-1) + fib1(n-2)
    return fibs[n]
```

naive recursion without memoization: \(O(1.618...^n) \)

DP1: top-down with memoization: \(O(n) \)
Dynamic Programming 101

- DP = recursion (divide-n-conquer) + caching (overlapping subproblems)

- the simplest example is Fibonacci

\[
f(n) = f(n-1) + f(n-2)
\]

\[
f(1) = f(2) = 1
\]

DP1: top-down with memoization: $O(n)$

```python
def fib(n):
    if n <= 2:
        return 1
    return fib(n-1) + fib(n-2)
```

naive recursion without memoization: $O(1.618...^n)$

DP2: bottom-up: $O(n)$

```python
def fib0(n):
    a, b = 1, 1
    for i in range(3, n+1):
        a, b = a+b, a
    return a
```

```python
def fib1(n):
    fibs={1:1, 2:1}
    if n not in fibs:
        fibs[n] = fib1(n-1) + fib1(n-2)
    return fibs[n]
```
Number of Bitstrings

2
• number of n-bit strings that do not have 00 as a substring
Number of Bitstrings

- number of n-bit strings that do not have 00 as a substring
 - e.g. $n=1$: 0, 1; $n=2$: 01, 10, 11; $n=3$: 010, 011, 101, 110, 111
number of \(n \)-bit strings that do not have 00 as a substring

- e.g. \(n=1 \): 0, 1; \(n=2 \): 01, 10, 11; \(n=3 \): 010, 011, 101, 110, 111

what about \(n=0 \)?
Number of Bitstrings

- number of n-bit strings that do **not** have 00 as a substring
 - e.g. $n=1$: 0, 1; $n=2$: 01, 10, 11; $n=3$: 010, 011, 101, 110, 111
 - what about $n=0$?

- first bit “1” followed by $f(n-1)$ substrings
Number of Bitstrings

- number of n-bit strings that do not have 00 as a substring
 - e.g. $n=1$: 0, 1; $n=2$: 01, 10, 11; $n=3$: 010, 011, 101, 110, 111
 - what about $n=0$?
 - first bit “1” followed by $f(n-1)$ substrings
 - first two bits “01” followed by $f(n-2)$ substrings
Number of Bitstrings

- number of n-bit strings that do not have 00 as a substring
 - e.g. $n=1$: 0, 1; $n=2$: 01, 10, 11; $n=3$: 010, 011, 101, 110, 111
- what about $n=0$?
- first bit “1” followed by $f(n-1)$ substrings
- first two bits “01” followed by $f(n-2)$ substrings

$$f(n) = f(n - 1) + f(n - 2)$$
• number of \(n \)-bit strings that do not have 00 as a substring

 • e.g. \(n=1 \): 0, 1; \(n=2 \): 01, 10, 11; \(n=3 \): 010, 011, 101, 110, 111

 • what about \(n=0 \)?

• first bit “1” followed by \(f(n-1) \) substrings

• first two bits “01” followed by \(f(n-2) \) substrings

\[
f(n) = f(n - 1) + f(n - 2)
\]

\(f(1) = 2, f(0) = 1 \)
Max Independent Set
Max Independent Set

- max weighted independent set on a linear-chain graph
Max Independent Set

- max weighted independent set on a linear-chain graph
- e.g. 7 -- 2 -- 3 -- 5 -- 8
Max Independent Set

• max weighted independent set on a linear-chain graph
 • e.g. 7 -- 2 -- 3 -- 5 -- 8
 • subproblem: \(f(n) \) -- max independent set for \(a[1]..a[n] \)
Max Independent Set

- max weighted independent set on a linear-chain graph
- e.g. 7 -- 2 -- 3 -- 5 -- 8
- subproblem: $f(n)$ -- max independent set for $a[1]..a[n]$

$$f(n) = \max\{f(n - 1), \ f(n - 2) + a[n]\}$$
Max Independent Set

- max weighted independent set on a linear-chain graph

- e.g. 7 -- 2 -- 3 -- 5 -- 8

- subproblem: \(f(n) \) -- max independent set for \(a[1]..a[n] \)
 \[
 f(n) = \max \{ f(n-1), f(n-2) + a[n] \}
 \]

\(f(0)=0; f(1)=a[1] \)?
Max Independent Set

- max weighted independent set on a linear-chain graph
- e.g. 7 -- 2 -- 3 -- 5 -- 8
- subproblem: \(f(n) \) -- max independent set for \(a[1]..a[n] \)

 \[
 f(n) = \max\{f(n-1), f(n-2) + a[n]\}
 \]

\(f(0)=0; f(1)=a[1] \)?

better: \(f(0)=0; f(-1)=0 \)
Summary

- Dynamic Programming = divide-n-conquer + overlapping
 - “distributivity” of work: \(a*c+b*c+a*d+b*d = (a+b)*(c+d) \)
- two implementation styles
 - 1. recursive top-down + memoization
 - 2. bottom-up
 - also need backtracking for recovering best solution
- three steps in solving a DP problem
 - define the subproblem
 - recursive formula
 - base cases