

Neural Network Optimizaton 2

CS 519 Deep Learning, Winter 2016

Fuxin Li

Tricks of the trade

- As you might have seen, it's a bit difficult to make NN work well!
- Many tricks needed
- Some are optimization-related
 - Momentum
 - RMSprop
 - Adagrad
 - Adam, etc.
- Some are regularization-related
 - Dropout
 - Batch normalization
 - Particular regularizing network structures, etc.

Nesterov Momentum vs. Momentum

- Perform the "inertia" step first before taking gradient
- Better theoretical guarantees in convex optimization

Sutskever et al. On the importance of momentum and initialization in deep learning. ICML 2013.

Nesterov Momentum vs. Momentum

- N: Nesterov
- M: Momentum
- Number: μ_{max}
- Schedule:

$$\mu_t = \min(1 - 2^{-1 - \log_2(\lfloor t/250 \rfloor + 1)}, \mu_{\max})$$

task	$0_{(SGD)}$	0.9N	0.99N	0.995N	0.999N	
Curves	0.48	0.16	0.096	0.091	0.074	
Mnist	2.1	1.0	0.73	0.75	0.80	
Faces	36.4	14.2	8.5	7.8	7.7	
$(j + 1), \mu_{\max})$		$0.9 \mathrm{M}$	$0.99 \mathrm{M}$	$0.995 \mathrm{M}$	$0.999 \mathrm{M}$	Γ
		0.15	0.10	0.10	0.10	Ī
		1.0	0.77	0.84	0.90	
		15.3	8.7	8.3	9.3	

Sutskever et al. On the importance of momentum and initialization in deep learning. ICML 2013.

Trick #2: Adaptive learning rates

- Recall, learning rate should go to zero for convergence
- Is fixed learning rate a great idea?
- Simple learning rate decay:
 - Reduce the learning rate after every few epochs
 - Seems to work relatively well if all the weights are quite balanced

The intuition behind separate adaptive learning rates

- Learning rates can be set per weight or layer
 - Gradient magnitudes differ across layers
 - fan-in of a unit determines the size of the "overshoot" effects
 - Use a global learning rate times local gain

Gradients can get very small in the early layers of very deep nets.

The fan-in often varies widely between layers.

AdaGrad (Duchi 2011)

- If the gradient is large, stepsize should be small
- Use square-root of accumulated gradient norm to be step size

$$r_{Tk} = \sum_{i=1}^{T} ||G_{ik}||^2 = r_{T-1,k} + ||G_{ik}||^2$$
$$\alpha_k = \frac{\alpha_0}{\sqrt{r_{Tk}}}$$
Try:

$$\min_{w_1,w_2} (w_1 - 1)^2 + 100(w_2 - 1)^2$$

AdaGrad

Algorithm 8.4 The AdaGrad algorithm **Require:** Global learning rate ϵ **Require:** Initial parameter $\boldsymbol{\theta}$ **Require:** Small constant δ , perhaps 10^{-7} , for numerical stability Initialize gradient accumulation variable r = 0while stopping criterion not met do Sample a minibatch of m examples from the training set $\{x^{(1)}, \ldots, x^{(m)}\}$ with corresponding targets $\boldsymbol{y}^{(i)}$. Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$ Accumulate squared gradient: $\boldsymbol{r} \leftarrow \boldsymbol{r} + \boldsymbol{g} \odot \boldsymbol{g}$ Compute update: $\Delta \boldsymbol{\theta} \leftarrow -\frac{\epsilon}{\delta + \sqrt{\boldsymbol{r}}} \odot \boldsymbol{g}$. (Division and square root applied element-wise) Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$ end while

RMSprop

- AdaGrad does not work well for non-convex problems
- Remembered too much history
- In stochastic non-convex optimization, history might be not very useful

$$r_{Tk} = \rho r_{T-1,k} + (1-\rho) \|G_{Tk}\|^2$$

e.g.
$$\rho = 0.9$$

RMSprop

Algorithm 8.5 The RMSProp algorithm			
Require: Global learning rate ϵ , decay rate ρ .			
Require: Initial parameter $\boldsymbol{\theta}$			
Require: Small constant δ , usually 10 ⁻⁶ , used to stabilize division by small			
numbers.			
Initialize accumulation variables $\boldsymbol{r}=0$			
while stopping criterion not met do			
Sample a minibatch of m examples from the training set $\{\boldsymbol{x}^{(1)}, \ldots, \boldsymbol{x}^{(m)}\}$ with			
corresponding targets $\boldsymbol{y}^{(i)}$.			
Compute gradient: $\boldsymbol{g} \leftarrow \frac{1}{m} \nabla_{\boldsymbol{\theta}} \sum_{i} L(f(\boldsymbol{x}^{(i)}; \boldsymbol{\theta}), \boldsymbol{y}^{(i)})$			
Accumulate squared gradient: $\mathbf{r} \leftarrow \rho \mathbf{r} + (1 - \rho) \mathbf{g} \odot \mathbf{g}$			
Compute parameter update: $\Delta \theta = -\frac{\epsilon}{\sqrt{\delta+r}} \odot g$. $(\frac{1}{\sqrt{\delta+r}}$ applied element-wise)			
Apply update: $\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \Delta \boldsymbol{\theta}$			
end while			

Combining RMSProp with Nesterov Momentum (Sutskever 2013)

- Use RMSprop on the gradient part of the momentum
- Somehow it doesn't seem to work well with normal momentum

$$\begin{split} \boldsymbol{D}_0 &= 0 \\ \boldsymbol{D}_{t+1} &= \mu \boldsymbol{D}_t - \alpha \nabla f(\boldsymbol{W}_t + \mu \boldsymbol{D}_t) \\ \boldsymbol{W}_{t+1} &= \boldsymbol{W}_t + \boldsymbol{D}_{t+1} \end{split} \qquad \begin{aligned} \boldsymbol{D}_{t+1} &= \mu \boldsymbol{D}_t - \frac{\alpha}{\sqrt{r_t}} \odot \nabla f(\boldsymbol{W}_t + \mu \boldsymbol{D}_t) \\ \boldsymbol{W}_{t+1} &= \boldsymbol{W}_t + \boldsymbol{D}_{t+1} \end{aligned}$$

Adam

- Running average of momentum estimates and RMS estimates are both biased
- Take RMSprop estimate at stationary state:

$$r_{Tk} = \rho r_{T-1,k} + (1-\rho) \|G_{Tk}\|^2$$

= $(1-\rho) \sum_{i}^{T} \rho^{T-i} \|G_{Tk}\|^2$
$$\mathbb{E}(r_{Tk}) = \mathbb{E}(\|G_k\|^2)(1-\rho) \sum_{i}^{T} \rho^{T-i}$$

= $\mathbb{E}(\|G_k\|^2)(1-\rho^T)^i$

Adam

- Robust choice of step size
- Two moment estimates:
 - Bias-correcting momentum(T here is not transpose, is T-th power!), e.g. $\rho_1 = 0.99$

$$D_T = \frac{\rho_1}{1 - \rho_1^T} D_{T-1} + \frac{1 - \rho_1}{1 - \rho_1^T} G_T$$

• Bias-correcting RMS estimate (average gradient norm), e.g. $\rho_2 = 0.999$

$$r_{Tk} = \frac{\rho_2}{1 - \rho_2^T} r_{T-1,k} + \frac{1 - \rho_2}{1 - \rho_2^T} \|G_{Tk}\|^2$$

• Final update:

$$W_k = W_k - \epsilon \frac{D_{Tk}}{\sqrt{r_{Tk}}}$$

Polyak averaging

- $\widehat{W_T} = \alpha \widehat{W_{T-1}} + (1 \alpha) W_T$
- Sometimes used only at the end of optimization to create a "momentum"-like effect for the final model

When to use these things?

- Adam is usually good if you want to avoid tuning learning rate
- However, sometimes fixed learning rate + some manual decreases work just fine
- RMSprop + Nesterov momentum also works well
- Usually Adagrad is not used in deep learning
- Polyak averaging is a bit redundant with momentum, hence mostly used at the end (testing time)