
11. Neural Network
Regularization
CS 519 Deep Learning, Winter 2016

Fuxin Li

With materials from Andrej Karpathy, Zsolt Kira

• Approach 1: Get more data!
• Always best if possible!
• If no natural ones, use data

augmentation

• Approach 2: Use a model
that has the right capacity:

• enough to fit the true
regularities.

• not enough to also fit spurious
regularities (if they are
weaker).

• Parameter tuning

• Approach 3: Average many
different models.

• Models with different forms.
• Train on different subsets

• Approach 4: Use specific
regularizing structures

Preventing overfitting

Regularization: Preventing Overfitting

• To prevent overfitting, a large number of different
methods have been developed.

• Data Augmentation (talked about)
• Weight-sharing structures (talked about, e.g. CNN, RNN)
• Weight-decay (talked about)
• Early stopping (talked about)
• Model averaging
• Dropout
• Batch normalization
• Weight regularization structures
• Bayesian fitting of neural nets
• Generative pre-training (will talk later)
• Sparsity in hidden units (will talk later)

• Bagging: Train different
models on different subsets
of the data.

• Sample data with
replacement
a,b,c,d,e  a c c d b

• Random forests use lots of
different decision trees
trained using bagging.
They work well.

• We could use bagging
with neural nets.

• Boosting: Train a sequence
of low capacity models.
Weight the training cases
differently for each model
in the sequence.

• Boosting up-weights cases
that previous models got
wrong.

• An early use of boosting was
with neural nets for MNIST.

• It focused the computational
resources on modeling the
tricky cases.

Making models differ by changing their training data

Bagging in Deep Neural Networks

• Deep networks are inherent local
optimization algorithms

• Different starting points give very different
result networks!

• Directly averaging networks with different
initializations

• No bootstrapping!

Some model averaging results

Multiple examples from one test data:
Test time Cropping
• e.g. Resize the image into different sizes/aspect ratios, crop squares at

different places of the image
• Similar to object proposals, but squared
• Reduce the error significantly with 144/150 crops (proposals)

Effect of Test-time Cropping/model Averaging

Inception (GoogLeNet):

VGG single model:

VGG multiple models:

Dropout: An efficient way to average many large
neural nets
• Consider a neural net

with one hidden layer.
• Each time we present a

training example, we
randomly omit each
hidden unit with
probability 0.5.

• So we are randomly
sampling from 2^H
different architectures.

• All architectures share
weights.

• If a hidden unit knows
which other hidden units
are present, it can co-
adapt to them on the
training data.

• But complex co-
adaptations are likely to go
wrong on new test data.

• Big, complex conspiracies
are not robust.

• Dropout as orthogonalization

Dropout as preventing co-adaptation

Dropout as a form of model averaging

• We sample from 2^H models. So only a few of the models ever get
trained, and they only get one training example.

• The sharing of the weights means that every model is very strongly
regularized.

• It’s a much better regularizer than L2 or L1 penalties that pull the weights
towards zero.

But what do we do at test time?

• We could sample many different architectures and take the geometric
mean of their output distributions.

• It better to use all of the hidden units, but to halve their outgoing
weights.

• This exactly computes the geometric mean of the predictions of all 2^H
models.

What if we have more hidden layers?

• Use dropout of 0.5 in every layer.
• At test time, use the “mean net” that has all the outgoing weights

halved.
• This is not exactly the same as averaging all the separate dropped out models,

but it’s a pretty good approximation, and its fast.

• Alternatively, run the stochastic model several times on the same
input.

• This gives us an idea of the uncertainty in the answer.

What about the input layer?

• It may help to use dropout there too, but with a higher probability of
keeping an input unit.

• Averaging out the noise in the input if it’s noisy (don’t use it if it’s not noisy)
• This trick is already used by the “denoising autoencoders” developed by

Pascal Vincent, Hugo Larochelle and Yoshua Bengio.

Some dropout tips

• Dropout lowers your capacity
• Increase network size by n/p where n is # hidden units in original, p is

probability of dropout

• Dropout adds noise to gradients
• Increase learning rate by 10-100
• Or increase momentum (e.g. from 0.9 to 0.99)
• These can cause large weight growths, use weight regularization

How well does dropout work?

• The record breaking object recognition net developed by Alex
Krizhevsky (see lecture 5) uses dropout and it helps a lot.

• VGG network also uses dropout heavily (to the note of 90% dropout)
• The ResNet (state-of-the-art in 2015) doesn’t use dropout
• If your deep neural net is significantly overfitting, dropout will usually

reduce the number of errors by a lot.
• Any net that uses “early stopping” can do better by using dropout (at the cost

of taking quite a lot longer to train).
• If your deep neural net is not overfitting you should be using a bigger

one!

Batch normalization (Ioffe and Szegedy 2015)

• Idea: Deep layers can have increased bias
• Suppose: 𝑦𝑦 = 𝑥𝑥𝑤𝑤1𝑤𝑤2𝑤𝑤3 …𝑤𝑤𝑙𝑙
• Update: 𝒘𝒘 = 𝒘𝒘− 𝜖𝜖𝒈𝒈
• 𝑦𝑦 = 𝑥𝑥(𝑤𝑤1 − 𝜖𝜖𝑔𝑔1)(𝑤𝑤2 − 𝜖𝜖𝑔𝑔2)(𝑤𝑤3 − 𝜖𝜖𝑔𝑔3) … (𝑤𝑤𝑙𝑙 − 𝜖𝜖𝑔𝑔𝑙𝑙)
• AdaGrad etc. sets 𝜖𝜖 = 𝜖𝜖/| 𝒈𝒈 |
• When deep, many terms with various levels of epsilon values!

• E.g. a term 𝜖𝜖2𝑔𝑔1𝑔𝑔2 ∏𝑖𝑖=3
𝑙𝑙 𝑤𝑤𝑖𝑖 and a term 𝜖𝜖𝑔𝑔5 ∏𝑖𝑖=1,𝑖𝑖≠5

𝑙𝑙 𝑤𝑤𝑖𝑖
• What if, e.g.∏𝑖𝑖=3

𝑙𝑙 𝑤𝑤𝑖𝑖 is very big?
• Especially, during first few iterations?

Whitening

• It makes sense to normalize the output of each layer
• 0 Mean, 1 standard deviation
• Empirically observed as improving convergence

• Latter layers can be considered “using previous layer’s output to
perform machine learning”

• How to do this during stochastic mini-batch optimization?
• “Approximate mean and standard deviation” using mini-batch

Imperfect approximation

• Use mini-batch to approximate E and Var
• What if it’s wrong?

• Make sure the network can “correct” this change

• 2 learnable parameters for each x

Batch Normalization Layer

• This is done for each
hidden dimension separately

• How many parameters?
• Gradient w.r.t. parameters?
• Gradient w.r.t. input?

All the gradients

Other stuff

• If 𝛾𝛾 = 0, equiv. to dropout
• No additional bias term needed in the conventional network (BN

provides the bias term)

Result

Result (faster learning rate!)

Result on ImageNet

The Inception Network

• Basic idea:
• Wider networks have more representation power

• But they are too slow
• Dimensionality reduction to allow for wider network

• Just drop some filters

Reduce number
of filters

+
Add nonlinearity with

another RELU

GoogLeNet

• Observation:
• Inception is mainly high-level
• Low-level network is not as

descriptive as VGG
• On high-level, possibly wider

network is useful

The Crazy Pic

• The whole network looks like this:
• Mainly, beyond inception, the big

deal is the additional yellow nodes
• These are output nodes for

prediction at middle layers
• Improves gradient conditioning

• Ameliorate vanishing gradient
• Similar methods are used to train VGG

	11. Neural Network Regularization
	Slide Number 2
	Regularization: Preventing Overfitting
	Slide Number 4
	Bagging in Deep Neural Networks
	Some model averaging results
	Multiple examples from one test data:�Test time Cropping
	Effect of Test-time Cropping/model Averaging
	Dropout: An efficient way to average many large neural nets
	Slide Number 10
	Dropout as a form of model averaging
	But what do we do at test time?
	What if we have more hidden layers?
	What about the input layer?
	Some dropout tips	
	How well does dropout work?
	Batch normalization (Ioffe and Szegedy 2015)
	Whitening
	Imperfect approximation
	Batch Normalization Layer
	All the gradients
	Other stuff
	Result
	Result (faster learning rate!)
	Result on ImageNet
	The Inception Network
	GoogLeNet
	The Crazy Pic

