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• Approach 1: Get more data!
• Always best if possible!
• If no natural ones, use data 

augmentation

• Approach 2: Use a model 
that has the right capacity:

• enough to fit the true 
regularities.

• not enough to also fit spurious 
regularities (if they are 
weaker).

• Parameter tuning

• Approach 3: Average many 
different models.

• Models with different forms.
• Train on different subsets

• Approach 4: Use specific 
regularizing structures

Preventing overfitting



Regularization: Preventing Overfitting

• To prevent overfitting, a large number of different 
methods have been developed.

• Data Augmentation (talked about)
• Weight-sharing structures (talked about, e.g. CNN, RNN)
• Weight-decay (talked about)
• Early stopping (talked about)
• Model averaging
• Dropout
• Batch normalization
• Weight regularization structures
• Bayesian fitting of neural nets
• Generative pre-training (will talk later)
• Sparsity in hidden units (will talk later)



• Bagging: Train different 
models on different subsets 
of the data.

• Sample data with 
replacement 
a,b,c,d,e  a c c d b

• Random forests use lots of 
different decision trees 
trained using bagging. 
They work well.

• We could use bagging 
with neural nets.

• Boosting: Train a sequence 
of low capacity models. 
Weight the training cases 
differently for each model 
in the sequence. 

• Boosting up-weights cases 
that previous models got 
wrong.

• An early use of boosting was 
with neural nets for MNIST.

• It focused the computational 
resources on modeling the 
tricky cases.

Making models differ by changing their training data



Bagging in Deep Neural Networks

• Deep networks are inherent local 
optimization algorithms

• Different starting points give very different 
result networks!

• Directly averaging networks with different 
initializations

• No bootstrapping!



Some model averaging results



Multiple examples from one test data:
Test time Cropping
• e.g. Resize the image into different sizes/aspect ratios, crop squares at 

different places of the image
• Similar to object proposals, but squared
• Reduce the error significantly with 144/150 crops (proposals)



Effect of Test-time Cropping/model Averaging

Inception (GoogLeNet):

VGG single model:

VGG multiple models:



Dropout: An efficient way to average many large 
neural nets
• Consider a neural net 

with one hidden layer.
• Each time we present a 

training example, we 
randomly omit each 
hidden unit with 
probability 0.5.

• So we are randomly 
sampling from 2^H 
different architectures.

• All architectures share 
weights.



• If a hidden unit knows 
which other hidden units 
are present, it can co-
adapt to them on the 
training data. 

• But complex co-
adaptations are likely to go 
wrong on new test data.

• Big, complex conspiracies 
are not robust.

• Dropout as orthogonalization

Dropout as preventing co-adaptation



Dropout as a form of model averaging

• We sample from 2^H models. So only a few of the models ever get 
trained, and they only get one training example.

• The sharing of the weights means that every model is very strongly 
regularized.

• It’s a much better regularizer than L2 or L1 penalties that pull the weights 
towards zero.



But what do we do at test time?

• We could sample many different architectures and take the geometric 
mean of their output distributions.

• It better to use all of the hidden units, but to halve their outgoing 
weights.

• This exactly computes the geometric mean of the predictions of all 2^H 
models.



What if we have more hidden layers?

• Use dropout of 0.5 in every layer.
• At test time, use the “mean net” that has all the outgoing weights 

halved.
• This is not exactly the same as averaging all the separate dropped out models, 

but it’s a pretty good approximation, and its fast.

• Alternatively, run the stochastic model several times on the same 
input. 

• This gives us an idea of the uncertainty in the answer.



What about the input layer?

• It may help to use dropout there too, but with a higher probability of 
keeping an input unit.

• Averaging out the noise in the input if it’s noisy (don’t use it if it’s not noisy)
• This trick is already used by the “denoising autoencoders” developed by 

Pascal Vincent, Hugo Larochelle and Yoshua Bengio.



Some dropout tips

• Dropout lowers your capacity
• Increase network size by n/p where n is # hidden units in original, p is 

probability of dropout

• Dropout adds noise to gradients
• Increase learning rate by 10-100
• Or increase momentum (e.g. from 0.9 to 0.99)
• These can cause large weight growths, use weight regularization



How well does dropout work?

• The record breaking object recognition net developed by Alex 
Krizhevsky (see lecture 5) uses dropout and it helps a lot.

• VGG network also uses dropout heavily (to the note of 90% dropout)
• The ResNet (state-of-the-art in 2015) doesn’t use dropout
• If your deep neural net is significantly overfitting, dropout will usually 

reduce the number of errors by a lot.
• Any net that uses “early stopping” can do better by using dropout (at the cost 

of taking quite a lot longer to train). 
• If your deep neural net is not overfitting you should be using a bigger 

one!



Batch normalization (Ioffe and Szegedy 2015)

• Idea: Deep layers can have increased bias
• Suppose: 𝑦𝑦 = 𝑥𝑥𝑤𝑤1𝑤𝑤2𝑤𝑤3 …𝑤𝑤𝑙𝑙
• Update: 𝒘𝒘 = 𝒘𝒘− 𝜖𝜖𝒈𝒈
• 𝑦𝑦 = 𝑥𝑥(𝑤𝑤1 − 𝜖𝜖𝑔𝑔1)(𝑤𝑤2 − 𝜖𝜖𝑔𝑔2)(𝑤𝑤3 − 𝜖𝜖𝑔𝑔3) … (𝑤𝑤𝑙𝑙 − 𝜖𝜖𝑔𝑔𝑙𝑙)
• AdaGrad etc. sets 𝜖𝜖 = 𝜖𝜖/| 𝒈𝒈 |
• When deep, many terms with various levels of epsilon values!

• E.g. a term 𝜖𝜖2𝑔𝑔1𝑔𝑔2 ∏𝑖𝑖=3
𝑙𝑙 𝑤𝑤𝑖𝑖 and a term 𝜖𝜖𝑔𝑔5 ∏𝑖𝑖=1,𝑖𝑖≠5

𝑙𝑙 𝑤𝑤𝑖𝑖
• What if, e.g.∏𝑖𝑖=3

𝑙𝑙 𝑤𝑤𝑖𝑖 is very big?
• Especially, during first few iterations?



Whitening

• It makes sense to normalize the output of each layer
• 0 Mean, 1 standard deviation
• Empirically observed as improving convergence

• Latter layers can be considered “using previous layer’s output to 
perform machine learning”

• How to do this during stochastic mini-batch optimization?
• “Approximate mean and standard deviation” using mini-batch



Imperfect approximation

• Use mini-batch to approximate E and Var
• What if it’s wrong?

• Make sure the network can “correct” this change

• 2 learnable parameters for each x



Batch Normalization Layer

• This is done for each 
hidden dimension separately

• How many parameters?
• Gradient w.r.t. parameters?
• Gradient w.r.t. input?



All the gradients



Other stuff

• If 𝛾𝛾 = 0, equiv. to dropout
• No additional bias term needed in the conventional network (BN 

provides the bias term)



Result



Result (faster learning rate!)



Result on ImageNet



The Inception Network

• Basic idea:
• Wider networks have more representation power

• But they are too slow
• Dimensionality reduction to allow for wider network

• Just drop some filters

Reduce number
of filters

+ 
Add nonlinearity with 

another RELU



GoogLeNet

• Observation:
• Inception is mainly high-level
• Low-level network is not as 

descriptive as VGG
• On high-level, possibly wider

network is useful



The Crazy Pic

• The whole network looks like this:
• Mainly, beyond inception, the big 

deal is the additional yellow nodes
• These are output nodes for 

prediction at middle layers
• Improves gradient conditioning

• Ameliorate vanishing gradient
• Similar methods are used to train VGG
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