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Unsupervised Learning in General

• Unsupervised learning is learning without annotations (labels)
• No regression targets
• No class labels
• No implicit labels (e.g. sequence to sequence)

• The goal is different from supervised learning
• Supervised learning is usually trying to learn a function 
• Unsupervised learning is learning a representation to compactly represent all 

the input 



Occam’s Razor Again

• In supervised learning, we seek to control overfitting by making the 
model simple

• In unsupervised learning, this is almost the only goal (before GANs)
• Use a short description to represent the data
• Minimal Description Length Principle
• Dimensionality Reduction
• Clustering



Manifold Hypothesis



Generic Unsupervised Learning

• The general reconstruction objective:

• Use a lower-dimensional subspace to represent 
• are the coordinates in the low-dimensional space
• Reduced curse of dimensionality
• “Simpler” model

• No constraint: PCA (Xu et al. ICML 2009)
• K-means clustering: 



Geometric Representations

PCA K-Means



Reconstruction

• is the reconstruction
• PCA

• Singular value decomposition
• K-means

• Reconstruct each item with its cluster center
• Can treat as “autoencoder”

• Encoding and decoding
• Sampling from the “code” space

• Generative model!



Deep Autoencoders
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Autoencoder.

Network is trained to 
output the input (learn 
identify function). 

Trivial solution unless:
- Constrain number of 
units in Layer 2 (learn 
compressed 
representation), or
- Constrain Layer 2 to 
be sparse. 
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Autoencoders



Sparse Autoencoders (SAE)



Training deep sparse Autoencoders



Note we are 
reconstructing a at 
this point, not x











A comparison of methods for compressing digit 
images to 30 real numbers
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Krizhevsky’s deep autoencoder
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256-bit binary code
The encoder has 
about 67,000,000 
parameters.

It takes a few days on 
a GTX 285 GPU to 
train on two million 
images. 



Reconstructions of 32x32 color images from 256-bit codes



retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space



retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space



Convolutional Autoencoders



Variational Autoencoders



The “Variational”

• Suppose there is one probabilistic encoder and one decoder 
that generates from unit Gaussian 

• Suppose for there is an inverse distribution represented by 
• Goal:

Generate Training Data Identity between the encoder and decoder



Variational Auto-Encoder

• Use Bayes Rule, one can convert:

• Hence, the optimization goal can be converted to:
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2 Gaussians! Closed-form solution



Variational Auto-Encoder



VAE Training

• Given dataset 
• Repeat until convergence

• Sample a mini-batch of M examples from as 
• Sample M noise vetors 
• Run forward and backward pass on to update 

• Note:
• Every iteration we use different !



GANs

• Still, VAE does not create crisp images

• Maybe the reconstruction error is not a good error metric!

• What’s the problem with the reconstruction error?
• L2 in the image space is not a good distance metric
• It does not need to generate anything other than the training set

Cf. Larsen et al. arXiv:1512.09300



Generative Adversarial Nets

• Coined by Ian Goodfellow in 2014
• Generative:

• Models the training distribution
• Can be sampled to produce “fake” examples

• Adversarial:
• Training involves “minimax” between two networks
• Discriminator: Learns to classify “real” vs “fake”
• Generator: Learns to output “real” images

• Network:
• Trains by gradient descent with backpropagation



Realistic Generation

Learning with Conditional Data

Learning to Encode





























• Unimportant Hacks
• Feature Matching
• Historical Averaging
• Label Smoothing
• Virtual Batch Normalization

• Very Important Hack
• Minibatch Discrimination

• Very Important Metric
• Inception Score











Intermission: Cat Videos









Wasserstein GAN

• Training DCGAN is unstable!
• WGAN: Replace classification with regression
• Estimate Earth-Mover’s Distance



Wasserstein GAN

• Linear, not sigmoid output for discriminator

• Conceptually “Discriminator” is now a “Critic”
• D(x) is now regression, not classification

• Discriminator must be Lipschitz-continuous
• WGAN: Limit all weights to [-.01, .01]



W-GAN Theory

• Kontorovich-Rubinstein duality:

• Hence we want to maximize the difference of and we solve
• a deep network (approximates any function)



W-GAN critic vs. GAN discriminator



Wasserstein GAN







Improved Wasserstein GAN

• WGAN: Limit all weights to [-.01, .01]
• WGAN-GP: Apply Gradient Penalty instead









Progressive Growing of GANs

• Contributions
• Progressive Per-Layer Training
• Minibatch Standard Deviation
• Weight and Feature Normalization

• Metrics
• Multiscale Structural Similarity
• Sliced Wasserstein Distance

• Experiments
• Ablation Studies
• CIFAR-10 Inception Score
• Nearest-Neighbor Comparisons



Contributions



Progressive Training

• Standard GAN: Generator and Discriminator
• Uses the WGAN-GP loss function
• Learns one layer at a time

• Trains until convergence on tiny 8x8 images
• Then appends a layer to G, D
• Trains until convergence on 16x16 images…

• Learn global structure first, then details
• Related to curriculum learning
• Like Deep Belief Nets from ancient history (2008)









Minibatch Standard Deviation

• Recall Minibatch Discrimination (Improved GAN)
• Attempts to limit mode collapse by showing the discriminator 

entire batches, not individual images
• If all images in a batch are identical, they are all fake

• Works as an extra layer in the discriminator
• Inserted near the end, before a FC layer



Minibatch Standard Deviation

• Recall Minibatch Discrimination (Improved GAN)



Minibatch Standard Deviation

• Minibatch Standard Deviation: Simpler approach
• Compute variance of each feature at spatial location
• Average the std. dev. among all features, locations
• Arrive at a single scalar value (mean of std. dev)

• Broadcast that scalar value to all images
• Take the mean of all those values

• Single scalar value represents “diversity”
• Discriminator quickly learns that diversity is good



Weight Normalization

• Less important but worth mentioning
• Replacement for batch norm, pixel norm, etc
• During training, weights are explicitly scaled

• Interacts with Adam/RMSProp momentum
• Ensures equal dynamic range for all layers



Feature Normalization

• Clamp feature vectors to the unit sphere, ie.
• Divide each vector by its Euclidean norm
• Normalize features by their magnitude

• Other papers do this to the latent noise vector
• Here we do it everywhere, works surprisingly well



Metrics



Evaluating Generative Models

• Recall Inception Score (Improved GAN)
• Single scalar value, larger is better
• Increases with increasing “objectness”
• Increases with diversity (of classifications)

• Problem: Entangles realism and diversity
• Is Inception 5.0 more realistic than 4.9?

• Problem: Only measures inter-class diversity
• Score is unaffected by variation within class
• A generator could output one realistic image per Imagenet class, and get a 

perfect Inception score



Evaluating Generative Models

• Better method: Use two separate metrics

• Multiscale Structural Similarity (MS-SSIM)
• Measures diversity within a set of images

• Sliced Wasserstein Distance (SWD)
• Measures statistical similarity between two sets



Multiscale Structural Similarity

• Similarity metric used in image processing
• Ranges from 0 (no similarity) to 1 (identical)
• Works at multiple downsampled scales

• Here, MS-SSIM applies to generator output
• Average of many sampled MS-SSIM(x, y) values
• Lower scores (more variety) are good
• Measures diversity



Sliced Wasserstein Distance

• For each image, build a Laplacian pyramid



Sliced Wasserstein Distance

• For each image, build a Laplacian pyramid
• Sample many patches from these pyramids
• Normalize them by their mean/variance
• Yields R/G/B histograms at each scale

• Measures difference in distributions
• Used as SWD(real_images, generated_images)
• Lower score (more similarity) is better
• Measures realism



Experiments







Nearest Neighbors
Comparison with training set images





Results



















Boltzmann Machine (Fully-connected MRF/CRF)

• Undirected graphical model
• Binary values on each variable

•
•

• Consider only binary interactions
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Boltzmann machine: 



Restricted Boltzmann Machines

• We restrict the connectivity to make 
inference and learning easier.

• Only one layer of hidden 
units.

• No connections between 
hidden units.

• In an RBM it only takes one step to 
reach thermal equilibrium when the 
visible units are clamped.

• So we can quickly get the 
exact value of :
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What you gain



Example: ShapeBM (Eslami et al. 2012)

• Generating shapes
• 2-layer RBM with local connections

• Learning from many horses



Training: Contrastive divergence

t = 0                 t = 1   

Dwij  e ( vihj
0  vihj

1)

Start with a training vector on the 
visible units.

Update all the hidden units in 
parallel.

Update the all the visible units in 
parallel to get a “reconstruction”.

Update the hidden units again. 

This is not following the gradient of the log likelihood. But it works well.

reconstructiondata
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Layerwise Pretraining
(Hinton & Salakhutdinov, 2006)
• They always looked like a really 

nice way to do non-linear 
dimensionality reduction:

• But it is very difficult to 
optimize deep autoencoders 
using backpropagation.

• We now have a much better 
way to optimize them:

• First train a stack of 4 RBM’s
• Then “unroll” them.  
• Then fine-tune with backprop.
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Belief Nets

• A belief net is a directed 
acyclic graph composed of 
random variables.

random
hidden        
cause

visible 
effect
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Deep Belief Net

• Belief net that is deep
• A generative model

• P(v,h1,…,hl) = p(v|h1) p(h1|h2)… p(hl-2|hl-1) p(hl-1,hl)
• Used for unsupervised training  of multi-layer deep model.

h1

v

h2

h3

… …

… …

… …

… …

P(v,h1,h2,h3) = p(x|h1) p(h1|h2) p(h2,h3)

Pixels=>edges=> local shapes=> object parts
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Deep Belief Net

• Learning problem: Adjust the interactions between 
variables to make the network more likely to 
generate the observed data

• Inference problem: Infer the states of the 
unobserved variables.

h1

v

h2

h3

… …

… …

… …

… …

P(v,h1,h2,h3) = p(v|h1) p(h1|h2) p(h2,h3)
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Deep Belief Net
• Inference problem (the problem of explaining away):

B A

C

h11 h12

x1

h1

x

… …

… …

P(A,B|C)  =  P(A|C)P(B|C)

P(h11, h12 | x1) ≠ P(h11| x1) P(h12 | x1)

An example from manuscript Sol: Complementary prior
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Deep Belief Net

h1

x

h2

h4

… …

… …

… …

… …

h3 … …

2000
1000
500

30

Sol: Complementary prior

 Inference problem (the problem 
of explaining away)

 Sol: Complementary prior
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Deep Belief Net
• Explaining away problem of Inference (see the 

manuscript)
• Sol: Complementary prior, see the manuscript

• Learning problem
• Greedy layer by layer RBM training (optimize lower bound) 

and fine tuning
• Contrastive divergence for RBM training

h1

x
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h3

… …

… …

… …

… …

P(hi = 1|x) = σ(ci +Wi · x)

… …

… …
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h1

x
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Deep Belief Net

• Why greedy layerwise learning work?
• Optimizing a lower bound:

• When we fix parameters for layer 1 and 
optimize the parameters for layer 2, we 
are optimizing the P(h1) in (1)
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How many layers should we use?

• There might be no universally right depth
• Bengio suggests that several layers is better than one
• Results are robust against changes in the size of a layer, 

but top layer should be big
• A parameter. Depends on your task.
• With enough narrow layers, we can model any 

distribution over binary vectors [1]

Copied from http://videolectures.net/mlss09uk_hinton_dbn/

[1] Sutskever, I. and Hinton, G. E., Deep Narrow Sigmoid Belief Networks are Universal Approximators. Neural 
Computation, 2007
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Effect of Unsupervised Pre-training 
(take with a grain of salt)

Erhan et. al.    AISTATS’2009 
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Effect of Depth

w/o pre-training
with pre-trainingwithout pre-training
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Why unsupervised pre-training 
makes sense

stuff

image label

stuff

image label

If image-label pairs were 
generated this way, it 
would make sense to try 
to go straight from 
images to labels.  
For example,  do the 
pixels have even parity?

If image-label pairs are 
generated this way, it 
makes sense to first learn 
to recover the stuff that 
caused the image by 
inverting the high 
bandwidth pathway.

high 
bandwidth

low 
bandwidth
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Beyond layer-wise pretraining

• Layer-wise pretraining is efficient but not optimal. 
• It is possible to train parameters for all layers using a 

wake-sleep algorithm.
• Bottom-up in a layer-wise manner
• Top-down and reffiting the earlier models
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Representation of DBN



Finally: Topics covered in this course:

• Basic Neural Networks
• Convolutional Networks
• Recurrent Neural Networks and Long Short-Term Memory
• Optimization and Regularization tricks
• Unsupervised Deep Models (fairly sparsely)


