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Unsupervised Learning in General

e Unsupervised learning is learning without annotations (labels)
* No regression targets
* No class labels
* No implicit labels (e.g. sequence to sequence)

* The goal is different from supervised learning
* Supervised learning is usually trying to learn a function f(x) = y

* Unsupervised learning is learning a representation to compactly represent all
the input x



Occam’s Razor Again

* In supervised learning, we seek to control overfitting by making the
model simple

* In unsupervised learning, this is almost the only goal (before GANs)
* Use a short description to represent the data
* Minimal Description Length Principle
* Dimensionality Reduction

* Clustering 0{
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Generic Unsupervised Learning

* The general reconstruction objective:

. . 2
min ||X — ZU]|¢ T g

* Use a lower-dimensional subspace U to represent X YoOX X
e 7 are the coordinates in the low-dimensional space ‘ z }

* Reduced curse of dimensionality
* “Simpler” model (&W@f |
* No constraint: PCA (Xu et al. ICML 2009)
%

* K-means clustering: z;; € {0,1}, 2, z;; = 1
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Geometric Representations

PCA K-Means
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Reconstruction

min ||X — ZU||?
Z,U

e ZU is the reconstruction

 PCA

 Singular value decomposition

* K-means
e Reconstruct each item with its cluster center

e Can treat as “autoencoder”
* Encoding and decoding

e Sampling from the “code” space
* Generative model!
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Deep Autoencoders

Z = O-(Wlx + bl)

h(x) =0 W,z + b,)
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Autoencoders

6 Autoencoder.
°\ /e Network is.trained to
\\¥@4I/, output the input (learn

/ identify function).
Ny e
’Xé[:\: az‘lﬁ/‘/ h@(&?) hy(x) =~ x
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- Constrain Layer 2 to
Layer 1 be sparse.




Sparse Autoencoders (SAE)

Training a sparse autoencoder.

Given unlabeled training set x4, X, ...

. 2
min [|g(z) — 2" + )\Z il

Reconstruction

L, sparsity term
error term



Training deep sparse Autoencoders




Note we are
reconstructing a at
this point, not x

Train parameters so th a,
subject to b;'s being sparse




Train parameters so that hy(x) =~ a,
subject to b;'s being sparse.






S
N d
RS\




New representation
for input.

Use [c,, C5, C5] as representation to feed to learning algorithm.



A comparison of methods for compressing digit
images to 30 real numbers
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Krizhevsky's deep autoencoder

The encoder has

256-bit binary code

about 67,000,000
parameters. ih
512
It takes a few days on i
a GTX 285 GPU to 1024
train on two million ﬁ
images. 2048
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Reconstructions of 32x32 color images from 256-bit codes
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Convolutional Autoencoders

Encoder Decoder
Network - -1 Network
(conv) (deconv)

latent vector / variables



Variational Autoencoders
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The “Variationa

* Suppose there is one probabilistic encoder Q(z|X) and one decoder
P(X|z) that generates X from unit Gaussian N(0, 1)

 Suppose for P there is an inverse distribution represented by P(z|X)
* Goal:

mgxlogP(X) — D (Q(z|X)||P (2] X))

I A\

Generate Training Data Identity between the encoder and decoder



Variational Auto-Encoder

max log P(X) — Dy, (Q(z]X)||P(z]X))
e Use Bayes Rule, one can convert:

Dk (Q(zIX)||P(21X)) = Ezx~o|log Q(z]X) — log(P(z|X))]

P(X|2)P(2)
= Eyjx-g[108Q(z1X) — log"12rC

= E,x~ollog Q(z]X) —log P(X|z) —log P(2)] + log P(X)

* Hence, the optimization goal can be converted to:
m)?x EZ|X~Q[L(X; z;P,Q)] = EZ|X~Q[lOgP(X|Z) — DKL(Q@W%D(Z))]

2 Gaussians! Closed-form solution



Variational Auto-Encoder
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VAE Training

 Given dataset X

* Repeat until convergence

* Sample a mini-batch of M examples from X as X,

* Sample M noise vetors e~N(0,1)

* Run forward and backward pass on L(X,;, z + €,60) to update 0
* Note:

e Every iteration we use different €!



GANS

* Still, VAE does not create crisp images

. o
' —— Encoder z Decoder — e

* Maybe the reconstruction error is not a good error metric!

* What’s the problem with the reconstruction error?
* L2 in the image space is not a good distance metric
* It does not need to generate anything other than the training set

Cf. Larsen et al. arXiv:1512.09300



Generative Adversarial Nets

* Coined by lan Goodfellow in 2014

* Generative:
* Models the training distribution
e Can be sampled to produce “fake” examples

e Adversarial:
* Training involves “minimax” between two networks
e Discriminator: Learns to classify “real” vs “fake”
* Generator: Learns to output “real” images

* Network:
* Trains by gradient descent with backpropagation
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Generative Adversarial Nets

The adversarial modeling framework is most straightforward to apply when the models are both
multilayer perceptrons. To learn the generator’s distribution p, over data x, we define a prior on
input noise variables p.(z), then represent a mapping to data space as G(z;60,), where GG is a
differentiable function represented by a multilayer perceptron with parameters 6,. We also define a
second multilayer perceptron D(x;6,) that outputs a single scalar. D(x) represents the probability
that  came from the data rather than p,. We train D to maximize the probability of assigning the
correct label to both training examples and samples from G. We simultaneously train G to minimize
log(1 — D(G(2))). In other words, D and G play the following two-player minimax game with
value function V (G, D):

min max V(D, G) = Egrpy ) 108 D(@)] + Exnp, (o log(1 — DGR (1)



Generative Adversarial Nets
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VAE

Encoder -1 Decoder
v . Given an X easy to find z.
v . Interpretable probability P(X)
X: Usually outputs blurry Images
GAN
Generator Discriminator

v : Very sharp images

X: Given an X difficult
to find z. (Need to
backprop.)

v IX: No explicit P(X).

Imane Credit: Aiitnencodina hevond nixels 11sina a learned similaritv meatrie




GAN + VAE (Best of both models)

Decoder/
Generator

Encoder o Z
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Image Credit: Autoencoding beyond pixels using a learned similarity metric

Discriminator

KL Divergence L, Difference
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. ) Dis;
L = Lprior + Lyjjye
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VAE,. : Train a GAN first, then use the discriminator of GAN to train a VAE.

VAE/GAN: GAN and VAE trained together.

Image Credit: Autoencoding bevond pixels using a learned similarity metric




Conditional VAE (CVAE)

What if we have labels? (e.g. digit

IX = f@)IP
labels or attributes) Or other inputs T
. . f(2)
we wish to condition on (Y). /)
KLIN (p(X).2(X))|N(0.1)]| | Decoder
- NONE of the derivation changes. | A A (P

- Replace all P(X|z) with P(X|z,Y).

- Replace all Q(z|X) with Q(z|X,Y).

- Go through the same KL divergence
procedure, to get the same lower Encoder | [sample ¢ from \((0, }]

()
bound. A \rw[
X Y

Image Credit: Tutorial on VAEs
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Attribute-conditioned Image Generation

Imaae Credit: Attribute2lmaae



Attribute-conditioned image progression

Male Female  Smiling Frowning’ Black hair Blonde hair

(a) progression on gender (c) progression on expression (e) progression on hair color
Young Senior  No eyewear Eyewear  Blue Yellow
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(b) progression on age (d) progression on eyewear (f) progression on primary color

pe(z|y,z) with z ~ N(0,I) and ¥y = [Ya, Yrest], Where Yo = (1—Q)-Ymin+Q- Ymax

maaqge Credit: Attribute2lmaae
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Under review as a conference paper at ICLR 2016

UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
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Under review as a conference paper at ICLR 2016

UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.

Remove fully connected hidden layers for deeper architectures.

Use RelLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReL.U activation in the discriminator for all layers.




UNSUPERVISED REPRESENTATION LEARNING
WITH DEEP CONVOLUTIONAL
GENERATIVE ADVERSARIAL NETWORKS

man man woman
with glasses without glasses without glasses

woman with glasses



Improved Techniques for Training GANs
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Improved Techniques for Training GANSs

* Unimportant Hacks
* Feature Matching
 Historical Averaging
* Label Smoothing
 Virtual Batch Normalization

* Very Important Hack
 Minibatch Discrimination

* Very Important Metric
* Inception Score



Improved Techniques for Training GANSs

Figure 1: Figure sketches how mini-
batch discrimination works. Features
f(x;) from sample x; are multiplied
through a tensor 7', and cross-sample
distance is computed.



Improved Techniques for Training GANs

exp(EzKL(p(y|z)||p(y)))

As an alternative to human annotators, we propose an automatic method to evaluate samples, which
we find to correlate well with human evaluation: We apply the Inception model! [19] to every
generated image to get the conditional label distribution p(y|x). Images that contain meaningful
objects should have a conditional label distribution p(y|x) with low entropy. Moreover, we expect
the model to generate varied images, so the marginal [ p(y|z = G(z))dz should have high entropy.
Combining these two requirements, the metric that we propose is: exp(ELKL(p(y|x)||p(y))), where
we exponentiate results so the values are easier to compare. Our Inception score is closely related
to the objective used for training generative models in CatGAN [14]: Although we had less success
using such an objective for training, we find it is a good metric for evaluation that correlates very

well with human judgment. We find that it’s important to evaluate the metric on a large enough
number of samples (i.e. 50k) as part of this metric measures diversity.



Improved Techniques for Training GANSs

Figure 6: Samples generated from the ImageNet dataset. (Left) Samples generated by a DCGAN.
(Right) Samples generated using the techniques proposed in this work. The new techniques enable
GAN:Ss to learn recognizable features of animals, such as fur, eyes, and noses, but these features are
not correctly combined to form an animal with realistic anatomical structure.
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Intermission: Cat Videos






GAN
Goodfellow et al.
NIPS 2014

DCGAN
Radford et al.
ICLR 2016

Improved GAN
Salimans et al.
NIPS 2016

WGAN

Arjovsky et al.
ICML 2017

WGAN-GP
Gulrajani et al.
NIPS 2017

PG-GAN
Karras et al
ICLR 2018




Wasserstein GAN
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Wasserstein GAN

* Training DCGAN is unstable!
* WGAN: Replace classification with regression
 Estimate Earth-Mover’s Distance

The Earth-Mover (EM) distance or Wasserstein-1

]P)T-,HD — ' f E;[: ~ _ ) 1
W (P, Py) en o B <z =yl ] (1)

where II(P,, P;) denotes the set of all joint distributions v(z, y) whose marginals
are respectively P, and P,. Intuitively, y(z,y) indicates how much “mass”
must be transported from x to y in order to transform the distributions P,
into the distribution PP;. The EM distance then is the “cost” of the optimal
transport plan.



Wasserstein GAN

* Linear, not sigmoid output for discriminator

e Conceptually “Discriminator” is now a “Critic”
* D(x) is now regression, not classification

* Discriminator must be Lipschitz-continuous
« WGAN: Limit all weights to [-.01, .01]



W-GAN Theory

e Kontorovich-Rubinstein duality:

W(Pm PG) — ||fb||up<1 E:EN]P.p [f(.il;‘)] o EINPQ [f($)]

* Hence we want to maximize the difference of B. and Py we solve
* f a deep network (approximates any function)

fgle% i~y i (T)] — 4j‘?«'NJD(Z)[f’UJ(g‘5’(Z)]



W-GAN critic vs. GAN discriminator

1.0

Density of real
Density of fake
GAN Discriminator | |
WGAN Critic

|1

0.8 |

-0.21 g Vanishing gradients
in regular GAN

-8 -6 -4 -2 0 2 4 6



Wasserstein GAN

Figure 7: Algorithms trained with an MLP generator with 4 layers and 512 units with ReLU
nonlinearities. The number of parameters is similar to that of a DCGAN, but it lacks a
strong inductive bias for image generation. Left: WGAN algorithm. Right: standard GAN
formulation. The WGAN method still was able to produce samples, lower quality than the
DCGAN, and of higher quality than the MLP of the standard GAN. Note the significant
degree of mode collapse in the GAN MLP.
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Improved Training of Wasserstein GANs
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Improved Wasserstein GAN

« WGAN: Limit all weights to [-.01, .01]
* WGAN-GP: Apply Gradient Penalty instead

t~
I
=
S
=

B, D@] - E, (D@)]+) B [(IVaD(E)la~1)]. o

Original critic loss Our gradient penalty
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Figure 4: Samples of 128 x 128 LSUN bedrooms. We believe these samples are at least comparable
to the best published results so far.
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Under review as a conference paper at ICLR 2018

PROGRESSIVE GROWING OF GANS FOR IMPROVED
QUALITY, STABILITY, AND VARIATION

Tero Karras Timo Aila Samuli Laine Jaakko Lehtinen
NVIDIA NVIDIA NVIDIA NVIDIA and Aalto University
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Progressive Growing of GANs

* Contributions
* Progressive Per-Layer Training
* Minibatch Standard Deviation
* Weight and Feature Normalization

 Metrics
e Multiscale Structural Similarity
e Sliced Wasserstein Distance

* Experiments
* Ablation Studies
* CIFAR-10 Inception Score
* Nearest-Neighbor Comparisons



Contributions



Progressive Training

e Standard GAN: Generator and Discriminator
e Uses the WGAN-GP loss function

* Learns one layer at a time
* Trains until convergence on tiny 8x8 images
* Then appends a layerto G, D
* Trains until convergence on 16x16 images...

* Learn global structure first, then details
 Related to curriculum learning
* Like Deep Belief Nets from ancient history (2008)
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Training progresses

Figure 1: Our training starts with both the generator (G) and discriminator (D) having a low spa-
tial resolution of 4x4 pixels. As the training advances, we incrementally add layers to G and D,
thus increasing the spatial resolution of the generated images. All existing layers remain trainable
throughout the process. Here | N x N | refers to convolutional layers operating on N x N spatial
resolution. This allows stable synthesis in high resolutions and also speeds up training considerably.
One the right we show six example images generated using progressive growing at 1024 x 1024.




toRGB toRGB toRGB toRGB
l lay lv a l
@

i 1 i
D fromRGB ; fromRGB fromRGB
o [ 32:02
0.5x 0.5x
1-a o
16x16
(a) (b) (c)

Figure 2: When doubling the resolution of the generator (G) and discriminator (D) we fade in the
new layers smoothly. This example illustrates the transition from 16 x 16 images (a) to 32 x 32
images (c). During the transition (b) we treat the layers that operate on the higher resolution like a
residual block, whose weight « increases linearly from 0 to 1. Here | 2x |and | 0.5x |refer to doubling
and halving the image resolution using nearest neighbor filtering and average pooling, respectively.
The | toRGB | represents a layer that projects feature vectors to RGB colors and | fromRGB | does
the reverse; both use 1 x 1 convolutions. When training the discriminator, we feed in real images
that are downscaled to match the current resolution of the network. During a resolution transition,
we interpolate between two resolutions of the real images, similarly to how the generator output
combines two resolutions.
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Figure 4: Effect of progressive growing on training speed and convergence. The timings were
measured on a single-GPU setup using NVIDIA Tesla P100. (a) Statistical similarity with respect
to wall clock time for Gulrajani et al. (2017) using CELEBA at 128 x 128 resolution. Each graph
represents sliced Wasserstein distance on one level of the Laplacian pyramid, and the vertical line
indicates the point where we stop the training in Table 1. (b) Same graph with progressive growing
enabled. The dashed vertical lines indicate points where we double the resolution of G and D. (c)
Effect of progressive growing on the raw training speed in 1024 x 1024 resolution.



Minibatch Standard Deviation

* Recall Minibatch Discrimination (Improved GAN)

* Attempts to limit mode collapse by showing the discriminator
entire batches, not individual images

* If all images in a batch are identical, they are all fake
* Works as an extra layer in the discriminator
* Inserted near the end, before a FC layer



Minibatch Standard Deviation

* Recall Minibatch Discrimination (Improved GAN)

The output o(z;) for this minibatch layer for a sample x;
is then defined as the sum of the cp(x;, ;)’s to all other
samples:



Minibatch Standard Deviation

* Minibatch Standard Deviation: Simpler approach
* Compute variance of each feature at spatial location
* Average the std. dev. among all features, locations
* Arrive at a single scalar value (mean of std. dev)

* Broadcast that scalar value to all images
* Take the mean of all those values

* Single scalar value represents “diversity”
* Discriminator quickly learns that diversity is good



Weight Normalization

* Less important but worth mentioning
* Replacement for batch norm, pixel norm, etc
* During training, weights are explicitly scaled

A

Wy = wy/e,

* Interacts with Adam/RMSProp momentum
* Ensures equal dynamic range for all layers



Feature Normalization

* Clamp feature vectors to the unit sphere, ie.
* Divide each vector by its Euclidean norm
* Normalize features by their magnitude

* Other papers do this to the latent noise vector
* Here we do it everywhere, works surprisingly well

N—-1, j
bz,y = aw,y/\/% Zj:O (az,y)? + €



Metrics



Evaluating Generative Models

* Recall Inception Score (Improved GAN)
 Single scalar value, larger is better
* Increases with increasing “objectness”
* Increases with diversity (of classifications)

* Problem: Entangles realism and diversity
* Is Inception 5.0 more realistic than 4.97?

* Problem: Only measures inter-class diversity
* Score is unaffected by variation within class

* A generator could output one realistic image per Imagenet class, and get a
perfect Inception score



Evaluating Generative Models

» Better method: Use two separate metrics

e Multiscale Structural Similarity (MS-SSIM)

* Measures diversity within a set of images

* Sliced Wasserstein Distance (SWD)
* Measures statistical similarity between two sets



Multiscale Structural Similarity

* Similarity metric used in image processing
* Ranges from 0 (no similarity) to 1 (identical)
* Works at multiple downsampled scales

* Here, MS-SSIM applies to generator output
* Average of many sampled MS-SSIM(x, y) values
* Lower scores (more variety) are good
* Measures diversity



Sliced Wasserstein Distance

* For each image, build a Laplacian pyramid

(Gaussian
pyramid

Laplacian
pyramid




Sliced Wasserstein Distance

* For each image, build a Laplacian pyramid
e Sample many patches from these pyramids
* Normalize them by their mean/variance
* Yields R/G/B histograms at each scale

* Measures difference in distributions
» Used as SWD(real_images, generated_images)
* Lower score (more similarity) is better
* Measures realism



Experiments



CELEBA LSUN BEDROOM

Training configuration Sliced Wasserstein distance x10® | MS-SSIM | Sliced Wasserstein distance x10° | MS-SSIM
128 64 32 16 Avg 128 64 32 16 Avg

(a) Gulrajani et al. (2017) 1299 7.79 7.62 873 9.28 0.2854 11.97 1051 8.03 1448 11.25 0.0587

(b) + Progressive growing 462 264 378 6.06 428 0.2838 7.09 627 740 9.64 7.60 0.0615

(c) + Small minibatch 75.42 41.33 41.62 26.57 46.23 0.4065 72.73 40.16 42.75 42.46 49.52 0.1061

(d) + Revised training parameters | 9.20 6.53 4.71 11.84 8.07 0.3027 739 551 3.65 963 6.54 0.0662
(e*) + Minibatch discrimination 10.76 6.28 6.04 1629 9.84 0.3057 1029 6.22 5.32 11.88 843 0.0648

(e)  Minibatch stddev 1394 5.67 282 571 7.04 0.2950 777 523 327 9.64 648 0.0671
(f) + Equalized learning rate 442 328 232 752 439 0.2902 3.61 332 271 644 4.02 0.0668
(g) + Pixelwise normalization 406 3.04 202 513 3.56 0.2845 380 3.05 324 587 4.1 0.0640
(h) Converged 242 217 224 499 296 0.2828 347 260 230 4.87 331 0.0636

Table 1: Sliced Wasserstein distance (SWD) between the generated and training images (Section 5)
and multi-scale structural similarity (MS-SSIM) among the generated images for several training
setups at 128 x 128. For SWD, each column represents one level of the Laplacian pyramid, and the
last one gives an average of the four distances.

(h) Converged

Figure 3: (a) — (g) CELEBA examples corresponding to rows in Table 1. These are intentionally
non-converged. (h) Our converged result. Notice that some images show aliasing and some are not
sharp — this is a flaw of the dataset, which the model learns to replicate faithfully.



Figure 9: CIFAR10 images generated using a network that was trained unsupervised (no label con-
ditioning), and achieves a record 8.80 inception score.

UNSUPERVISED LABEL CONDITIONED
Method Inception score Method Inception score
ALI (Dumoulin et al., 2016) 5.34 £ 0.05 DCGAN (Radford et al., 2015) 6.58
GMAN (Durugkar et al., 2016) 6.00 £0.19 Improved GAN (salimans eal., 2016)  8.09 & 0.07
Improved GAN  (Salimans et al., 2016) 6.86 £+ 0.06 AC-GAN (Odenaetal,2017)  8.25 + 0.07
CEGAN-Ent-VI (Daiet aL, 2017) 7.07 £0.07 SGAN (Huangetal,2016)  8.59 +0.12
LR-AGN (Yang et al., 2017) 717+ 0.17 WGAN-GP (Gulrajani etal, 2017)  8.67 &+ 0.14
DFM (Warde-Farley & Bengio, 2017) 7.72 £ 0.13 Splitting GAN  (Grinblatetal, 2017)  8.87 £ 0.09
WGAN-GP (Gulrajani et al., 2017) 7.86 £ 0.07
Splitting GAN  (Grinblat et al,, 2017) 7.90 £0.09
Our (best run) 8.80 £ 0.05
Our (computed from 10 runs) 8.56 + 0.06

Table 3: CIFAR10 inception scores, higher is better.



Nearest Neighbors

Comparison with training set images
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Boltzmmann Machine (Fully-connected MRF/CRF)

e Undirected graphical model
* Binary values on each variable
« x € {0,1}
*Px=1)=x
* Consider only binary interactions

E(x;0)=—> wx,x;,— > Ax,

i<j

E_fm(xm;é?m) _ et f(x0)
> T1/.G.86,) De™™  z©)

0:{w. A}

g

P(x;0) =

Boltzmann machine: E(v,h) =b'v+c"h+ h"™Wv +v'Uv + h"Vh



Restricted Boltzmann Machines

* We restrict the connectivity to make
inference and learning easier.

* Only one layer of hidden
units.

* No connections between
hidden units.

visible
* Inan RBM it only takes one step to h =1)=
reach thermal equilibrium when the p( J )

visible units are clamped. _(bj+ZViWij)
* So we can quickly get the l+e ievis
exact value of :
<vh>,



What you gain

1) Conditional probabilities factor nicely
P(h|v) = 11;P(h;|v) and P(v|h) = I1; P(v;|h)
2) Using binary units, we also can get
P(vj = 1|h) = o (b, +W h)
P(h; = 1|v) = o(c; + Wjv)

So we can get a sample of the visible or hidden
nodes easily...



Example: ShapeBM (Eslami et al. 2012)

W e
WA TR s

* Generating shapes
* 2-layer RBM with local connections

* Learning from many horses

(c)RBM (b) FA (a) Data

OQ‘IQ.'QO h
IRBEEL |
00000 V 00000 Vv ‘
(a) MRF (b) RBM

E
Naeer ,»E;‘e'::o : %

(c) DBM (d) ShapeBM (e) ShapeBM



Training: Contrastive divergence

Start with a training vector on the
©CO0e 906 visible units,

0 1
<Vihj7 <Vihj> Update all the hidden units in
gdeo| Te parallel
t=0 f=1 Update the all the visible units in
d_t rec_onstruction parallel to get a “reconstruction”.
ata

0 | Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well.



Layerwise Pretraining
(Hinton & Salakhutdinov, 2006)

* They always looked like a really
nice way to do non-linear
dimensionality reduction:

e But it is very difficult to
optimize deep autoencoders
using backpropagation.

* We now have a much better
way to optimize them:

* First train a stack of 4 RBM'’s

* Then “unroll” them.

* Then fine-tune with backprop.
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Belief Nets

e A belief net is a directed
acyclic graph composed of
random variables.

101

random
hidden
cause

visible
effect



Deep Belief Net

* Belief net that is deep
* A generative model

* P(v,hy,....h) =p(vlhy) p(hy|hy)... p(h | hy ) p(hyy,h)
* Used for unsupervised training of multi-layer deep model.

Pixels=>edges=> local shapes=> object parts A%

w2 P(v,hy,hy,h3) = p(x|hy) p(hylhy) p(ha,hs)



DBNs vs. DBMs

Deep Boltzmann Machine

h*

W:i
h?(C )

W2
h!C D,

Wl

DBNs are hybrid models:
* Inference in DBNs is problematic due to explaining away.
* Only greedy pretrainig, no joint optimization over all layers.
* Approximate inference is feed-forward: no bottom-up and top-down.



Deep Belief Net

 Learning problem: Adjust the interactions between
variables to make the network more likely to
generate the observed data

* Inference problem: Infer the states of the
unobserved variables.

0P(v,hy,hy,h3) = p(vlhy) p(hy|hy) p(hy,hs)



Deep Belief Net

* Inference problem (the problem of explaining away):

An example from manuscript ~ Sol: Complementary prior



D ee p B e | | ef N Et Decader

= Inference problem (the problem
of explaining away)

2 Sol: Complementary prior

30 EE ‘“““”“fJ

500
1000
2000

106 Sol: Complementary prior



| P(h; = 1[x) = a(c; +W; - x)
Deep Belief Net

e Explaining away problem of Inference (see the
manuscript)
* Sol: Complementary prior, see the manuscript
e Learning problem
* Greedy layer by layer RBM training (optimize lower bound)
and fine tuning
* Contrastive divergence for RBM training

h;
h;

h,
h, h,
h, BSOSO l "

h,
oo e °



Deep Belief Net

 Why greedy layerwise learning work?
* Optimizing a lower bound:
log P(x) = log Z P(x,h,)

/]

>3 (0 (n JIOIENBRIRNRE 1, 1 %)1- 0 (h, |x)log O (h, %)}

* When we fix parameters for layer 1 and
optimize the parameters for layer 2, we
are optimizing the P(h,) in (1)

108
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How many layers should we use?

* There might be no universally right depth
* Bengio suggests that several layers is better than one
* Results are robust against changes in the size of a layer,
but top layer should be big
* A parameter. Depends on your task.
e With enough narrow layers, we can model any
distribution over binary vectors [1]

[1] Sutskever, I. and Hinton, G. E., Deep Narrow Sigmoid Belief Networks are Universal Approximators. Neural
Computation, 2007

Copied from http://videolectures.net/mlssO09uk_hinton_dbn/
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Effect of Unsupervised Pre-training

(take with a grain of salt)

25
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Erhan et. al.

%—4 layer without pretraining
' ' Come layer with pretraining
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Effect of Depth
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Why unsupervised pre-training

makes sense

stuff

image label

If image-label pairs were
generated this way, it
would make sense to try
to go straight from
images to labels.

For example, do the
pixels have even parity?

stuff

high low
bandwidth bandwidth
image label

If image-label pairs are
generated this way, it
makes sense to first learn
to recover the stuff that
caused the image by
inverting the high
bandwidth pathway.



Beyond layer-wise pretraining

* Layer-wise pretraining is efficient but not optimal.
* It is possible to train parameters for all layers using a
wake-sleep algorithm.
* Bottom-up in a layer-wise manner
* Top-down and reffiting the earlier models

113



Representation of DBN
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Finally: Topics covered in this course:

* Basic Neural Networks

* Convolutional Networks

* Recurrent Neural Networks and Long Short-Term Memory
* Optimization and Regularization tricks

* Unsupervised Deep Models (fairly sparsely)



