
12. Unsupervised
Deep Learning
CS 535 Deep Learning, Winter 2018

Fuxin Li

With materials from Wanli Ouyang, Zsolt Kira, Lawrence Neal,
Raymond Yeh, Junting Lou and Teck-Yian Lim

Unsupervised Learning in General

• Unsupervised learning is learning without annotations (labels)
• No regression targets
• No class labels
• No implicit labels (e.g. sequence to sequence)

• The goal is different from supervised learning
• Supervised learning is usually trying to learn a function
• Unsupervised learning is learning a representation to compactly represent all

the input

Occam’s Razor Again

• In supervised learning, we seek to control overfitting by making the
model simple

• In unsupervised learning, this is almost the only goal (before GANs)
• Use a short description to represent the data
• Minimal Description Length Principle
• Dimensionality Reduction
• Clustering

Manifold Hypothesis

Generic Unsupervised Learning

• The general reconstruction objective:

• Use a lower-dimensional subspace to represent
• are the coordinates in the low-dimensional space
• Reduced curse of dimensionality
• “Simpler” model

• No constraint: PCA (Xu et al. ICML 2009)
• K-means clustering:

Geometric Representations

PCA K-Means

Reconstruction

• is the reconstruction
• PCA

• Singular value decomposition
• K-means

• Reconstruct each item with its cluster center
• Can treat as “autoencoder”

• Encoding and decoding
• Sampling from the “code” space

• Generative model!

Deep Autoencoders

, , ,

x4

x5

x6

+1

Layer 1

Layer 2

x1

x2

x3

x4

x5

x6

x1

x2

x3

+1

Layer 3

Autoencoder.

Network is trained to
output the input (learn
identify function).

Trivial solution unless:
- Constrain number of
units in Layer 2 (learn
compressed
representation), or
- Constrain Layer 2 to
be sparse.

a1

a2

a3

Autoencoders

Sparse Autoencoders (SAE)

Training deep sparse Autoencoders

Note we are
reconstructing a at
this point, not x

A comparison of methods for compressing digit
images to 30 real numbers

real
data

30-D deep
auto

30-D PCA

Krizhevsky’s deep autoencoder

1024 1024 1024

8192

4096

2048

1024

512

256-bit binary code
The encoder has
about 67,000,000
parameters.

It takes a few days on
a GTX 285 GPU to
train on two million
images.

Reconstructions of 32x32 color images from 256-bit codes

retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

retrieved using 256 bit codes

retrieved using Euclidean distance in pixel intensity space

Convolutional Autoencoders

Variational Autoencoders

The “Variational”

• Suppose there is one probabilistic encoder and one decoder
that generates from unit Gaussian

• Suppose for there is an inverse distribution represented by
• Goal:

Generate Training Data Identity between the encoder and decoder

Variational Auto-Encoder

• Use Bayes Rule, one can convert:

• Hence, the optimization goal can be converted to:

| ~

| ~

| ~

| ~ | ~

2 Gaussians! Closed-form solution

Variational Auto-Encoder

VAE Training

• Given dataset
• Repeat until convergence

• Sample a mini-batch of M examples from as
• Sample M noise vetors
• Run forward and backward pass on to update

• Note:
• Every iteration we use different !

GANs

• Still, VAE does not create crisp images

• Maybe the reconstruction error is not a good error metric!

• What’s the problem with the reconstruction error?
• L2 in the image space is not a good distance metric
• It does not need to generate anything other than the training set

Cf. Larsen et al. arXiv:1512.09300

Generative Adversarial Nets

• Coined by Ian Goodfellow in 2014
• Generative:

• Models the training distribution
• Can be sampled to produce “fake” examples

• Adversarial:
• Training involves “minimax” between two networks
• Discriminator: Learns to classify “real” vs “fake”
• Generator: Learns to output “real” images

• Network:
• Trains by gradient descent with backpropagation

Realistic Generation

Learning with Conditional Data

Learning to Encode

• Unimportant Hacks
• Feature Matching
• Historical Averaging
• Label Smoothing
• Virtual Batch Normalization

• Very Important Hack
• Minibatch Discrimination

• Very Important Metric
• Inception Score

Intermission: Cat Videos

Wasserstein GAN

• Training DCGAN is unstable!
• WGAN: Replace classification with regression
• Estimate Earth-Mover’s Distance

Wasserstein GAN

• Linear, not sigmoid output for discriminator

• Conceptually “Discriminator” is now a “Critic”
• D(x) is now regression, not classification

• Discriminator must be Lipschitz-continuous
• WGAN: Limit all weights to [-.01, .01]

W-GAN Theory

• Kontorovich-Rubinstein duality:

• Hence we want to maximize the difference of and we solve
• a deep network (approximates any function)

W-GAN critic vs. GAN discriminator

Wasserstein GAN

Improved Wasserstein GAN

• WGAN: Limit all weights to [-.01, .01]
• WGAN-GP: Apply Gradient Penalty instead

Progressive Growing of GANs

• Contributions
• Progressive Per-Layer Training
• Minibatch Standard Deviation
• Weight and Feature Normalization

• Metrics
• Multiscale Structural Similarity
• Sliced Wasserstein Distance

• Experiments
• Ablation Studies
• CIFAR-10 Inception Score
• Nearest-Neighbor Comparisons

Contributions

Progressive Training

• Standard GAN: Generator and Discriminator
• Uses the WGAN-GP loss function
• Learns one layer at a time

• Trains until convergence on tiny 8x8 images
• Then appends a layer to G, D
• Trains until convergence on 16x16 images…

• Learn global structure first, then details
• Related to curriculum learning
• Like Deep Belief Nets from ancient history (2008)

Minibatch Standard Deviation

• Recall Minibatch Discrimination (Improved GAN)
• Attempts to limit mode collapse by showing the discriminator

entire batches, not individual images
• If all images in a batch are identical, they are all fake

• Works as an extra layer in the discriminator
• Inserted near the end, before a FC layer

Minibatch Standard Deviation

• Recall Minibatch Discrimination (Improved GAN)

Minibatch Standard Deviation

• Minibatch Standard Deviation: Simpler approach
• Compute variance of each feature at spatial location
• Average the std. dev. among all features, locations
• Arrive at a single scalar value (mean of std. dev)

• Broadcast that scalar value to all images
• Take the mean of all those values

• Single scalar value represents “diversity”
• Discriminator quickly learns that diversity is good

Weight Normalization

• Less important but worth mentioning
• Replacement for batch norm, pixel norm, etc
• During training, weights are explicitly scaled

• Interacts with Adam/RMSProp momentum
• Ensures equal dynamic range for all layers

Feature Normalization

• Clamp feature vectors to the unit sphere, ie.
• Divide each vector by its Euclidean norm
• Normalize features by their magnitude

• Other papers do this to the latent noise vector
• Here we do it everywhere, works surprisingly well

Metrics

Evaluating Generative Models

• Recall Inception Score (Improved GAN)
• Single scalar value, larger is better
• Increases with increasing “objectness”
• Increases with diversity (of classifications)

• Problem: Entangles realism and diversity
• Is Inception 5.0 more realistic than 4.9?

• Problem: Only measures inter-class diversity
• Score is unaffected by variation within class
• A generator could output one realistic image per Imagenet class, and get a

perfect Inception score

Evaluating Generative Models

• Better method: Use two separate metrics

• Multiscale Structural Similarity (MS-SSIM)
• Measures diversity within a set of images

• Sliced Wasserstein Distance (SWD)
• Measures statistical similarity between two sets

Multiscale Structural Similarity

• Similarity metric used in image processing
• Ranges from 0 (no similarity) to 1 (identical)
• Works at multiple downsampled scales

• Here, MS-SSIM applies to generator output
• Average of many sampled MS-SSIM(x, y) values
• Lower scores (more variety) are good
• Measures diversity

Sliced Wasserstein Distance

• For each image, build a Laplacian pyramid

Sliced Wasserstein Distance

• For each image, build a Laplacian pyramid
• Sample many patches from these pyramids
• Normalize them by their mean/variance
• Yields R/G/B histograms at each scale

• Measures difference in distributions
• Used as SWD(real_images, generated_images)
• Lower score (more similarity) is better
• Measures realism

Experiments

Nearest Neighbors
Comparison with training set images

Results

Boltzmann Machine (Fully-connected MRF/CRF)

• Undirected graphical model
• Binary values on each variable

•
•

• Consider only binary interactions

 i
ii

ji
jiij xxxwE)(x;

,
)(

);(

);(

);(
);(

);(

);(

Z

f

e

e

f

f
P

E

E

m
m

mm

m
m

mm x

x

x
x

x

x

x

x

},{: iijw

Boltzmann machine:

Restricted Boltzmann Machines

• We restrict the connectivity to make
inference and learning easier.

• Only one layer of hidden
units.

• No connections between
hidden units.

• In an RBM it only takes one step to
reach thermal equilibrium when the
visible units are clamped.

• So we can quickly get the
exact value of :

visi
ijij wvb

j

e

hp
)(

1

1
)(1

v jihv

hidden

visiblei

j

What you gain

Example: ShapeBM (Eslami et al. 2012)

• Generating shapes
• 2-layer RBM with local connections

• Learning from many horses

Training: Contrastive divergence

t = 0 t = 1

Dwij e (vihj
0 vihj

1)

Start with a training vector on the
visible units.

Update all the hidden units in
parallel.

Update the all the visible units in
parallel to get a “reconstruction”.

Update the hidden units again.

This is not following the gradient of the log likelihood. But it works well.

reconstructiondata

vihj
0 vihj

1

i

j

i

j

100

Layerwise Pretraining
(Hinton & Salakhutdinov, 2006)
• They always looked like a really

nice way to do non-linear
dimensionality reduction:

• But it is very difficult to
optimize deep autoencoders
using backpropagation.

• We now have a much better
way to optimize them:

• First train a stack of 4 RBM’s
• Then “unroll” them.
• Then fine-tune with backprop.

1000 neurons

500 neurons

500 neurons

250 neurons

250 neurons

30

1000 neurons

28x28

28x28

1

2

3

4

4

3

2

1

W

W

W

W

W

W

W

W

T

T

T

T

linear
units

101

Belief Nets

• A belief net is a directed
acyclic graph composed of
random variables.

random
hidden
cause

visible
effect

102

Deep Belief Net

• Belief net that is deep
• A generative model

• P(v,h1,…,hl) = p(v|h1) p(h1|h2)… p(hl-2|hl-1) p(hl-1,hl)
• Used for unsupervised training of multi-layer deep model.

h1

v

h2

h3

… …

… …

… …

… …

P(v,h1,h2,h3) = p(x|h1) p(h1|h2) p(h2,h3)

Pixels=>edges=> local shapes=> object parts

104

Deep Belief Net

• Learning problem: Adjust the interactions between
variables to make the network more likely to
generate the observed data

• Inference problem: Infer the states of the
unobserved variables.

h1

v

h2

h3

… …

… …

… …

… …

P(v,h1,h2,h3) = p(v|h1) p(h1|h2) p(h2,h3)

105

Deep Belief Net
• Inference problem (the problem of explaining away):

B A

C

h11 h12

x1

h1

x

… …

… …

P(A,B|C) = P(A|C)P(B|C)

P(h11, h12 | x1) ≠ P(h11| x1) P(h12 | x1)

An example from manuscript Sol: Complementary prior

106

Deep Belief Net

h1

x

h2

h4

… …

… …

… …

… …

h3 … …

2000
1000
500

30

Sol: Complementary prior

 Inference problem (the problem
of explaining away)

 Sol: Complementary prior

107

Deep Belief Net
• Explaining away problem of Inference (see the

manuscript)
• Sol: Complementary prior, see the manuscript

• Learning problem
• Greedy layer by layer RBM training (optimize lower bound)

and fine tuning
• Contrastive divergence for RBM training

h1

x

h2

h3

… …

… …

… …

… …

P(hi = 1|x) = σ(ci +Wi · x)

… …

… …

… …

… …

… …

… …

h1

x

h2

h1

h3

h2

108

Deep Belief Net

• Why greedy layerwise learning work?
• Optimizing a lower bound:

• When we fix parameters for layer 1 and
optimize the parameters for layer 2, we
are optimizing the P(h1) in (1)

1h
11111

1

x|hx|hx|hhx|h

hx,x

)]}(log)()](log)()[log({

)(log)(log

QQPPQ

PP
h

… …

… …

… …

… …

… …

… …

h1

x

h2

h1

h3

h2

(1)

109

How many layers should we use?

• There might be no universally right depth
• Bengio suggests that several layers is better than one
• Results are robust against changes in the size of a layer,

but top layer should be big
• A parameter. Depends on your task.
• With enough narrow layers, we can model any

distribution over binary vectors [1]

Copied from http://videolectures.net/mlss09uk_hinton_dbn/

[1] Sutskever, I. and Hinton, G. E., Deep Narrow Sigmoid Belief Networks are Universal Approximators. Neural
Computation, 2007

110

Effect of Unsupervised Pre-training
(take with a grain of salt)

Erhan et. al. AISTATS’2009

111

Effect of Depth

w/o pre-training
with pre-trainingwithout pre-training

112

Why unsupervised pre-training
makes sense

stuff

image label

stuff

image label

If image-label pairs were
generated this way, it
would make sense to try
to go straight from
images to labels.
For example, do the
pixels have even parity?

If image-label pairs are
generated this way, it
makes sense to first learn
to recover the stuff that
caused the image by
inverting the high
bandwidth pathway.

high
bandwidth

low
bandwidth

113

Beyond layer-wise pretraining

• Layer-wise pretraining is efficient but not optimal.
• It is possible to train parameters for all layers using a

wake-sleep algorithm.
• Bottom-up in a layer-wise manner
• Top-down and reffiting the earlier models

114

Representation of DBN

Finally: Topics covered in this course:

• Basic Neural Networks
• Convolutional Networks
• Recurrent Neural Networks and Long Short-Term Memory
• Optimization and Regularization tricks
• Unsupervised Deep Models (fairly sparsely)

