Course Information

• Instructor: Dr. Fuxin Li
 • KEC 2077, lif@eecs.oregonstate.edu

• TA:
 • Xinyao Wang: wangxiny@oregonstate.edu

• My office hour: TBD (vote)

• Class Webpage:
 http://classes.engr.oregonstate.edu/eecs/winter2018/cs535/

• Questions/Discussions – on CANVAS
Prerequisites

• Significant knowledge on machine learning, especially the generics (not specific algorithms)
 • CS 534 or equivalent knowledge
 • Refresher will be provided in the next lecture

• Some knowledge of numerical optimization
 • 1.5 weeks will be devoted to optimization and also deep network optimization
Grading

- Initial quiz (5%) based on participation only
- 3 Assignments (30%)
 - Late assignments only on programming assignments (25% penalty for 2 days)
 - Must write your own code!
- Quizzes (2 more quizzes totaling 20%)
 - Based on whether you answer the questions correctly
- Final Project (45%)
 - Final project is to be done with teams not more than 3 participants
 - Grading will be done according to:
 - Initial proposal (10%)
 - Final oral presentation (10%)
 - Final written presentation (25%)
Materials

• Book:
 • Electronic version: http://www.deeplearningbook.org/

• More readings can be found at:
 • http://deeplearning.net/reading-list/
 • http://colah.github.io/
 • http://karpathy.github.io/
 • https://www.coursera.org/course/neuralnets
Toolboxes

• A plethora of deep learning toolboxes around:
 • Caffe
 • Theano
 • Torch, pyTorch
 • TensorFlow
 • CNTK, MXNet, Lasagne, Keras, Neon, etc.

• Toolbox policy:
 • We stick to pyTorch for assignments
 • Final project: select the one you are most comfortable with
Outcome

• Understand the concepts of deep learning
• Gain some intuitions on deep networks
• Understand the training of deep learning
• Be able to use at least one deep learning toolbox to design and train a deep network
• Be able to design new algorithms and new architectures
What will be covered

• Basic neural network structure
• Training tricks (SGD, Momentum etc.)
• CNNs
• LSTMs
• Unsupervised neural networks
• Neural reinforcement learning (Dead week)
Final Project

• Groups of no more than 3 persons
• Jointly work on a significant project
 • Must use deep learning
 • CANNOT be just running an already-trained classifier on some images
 • Try to solve a real problem
 • One can elect projects from paper readings
 • I will try to suggest some standard projects
 • New neural architectures/changes to current architectures are welcome
• Grading – based on the project merit, execution and presentation
Project Presentations

• 2 presentations for the final project
 • Initial design (at least 1 month before finals week)
 • Talk about what is your project about
 • What you plan to do
 • Re-grouping if several people are thinking about similar projects
 • Final presentation (finals week)
 • Need to identify who did what in the team

• 8 minutes per presentation
 • Slides uploaded to a common computer
Computing Resources

• Pelican cluster:
 • 4 nodes with 2 GTX 980 Ti (6GB) each
 • Accessible by SSH at pelican.eecs.oregonstate.edu
 • Policy: 1 GPU per group otherwise risk your jobs be killed

• If you want to buy your own:
 • Website will link you to a good article
 • GTX Titan V ($3,000!), GTX Titan X PASCAL, GTX 1080 Ti (Mar 2017), GTX 1080, GTX 1070 Ti ($450), GTX 1070, GTX 1060 (sorted descendingly by price)
Approximate schedule (will be on website)

• Week 1 (Jan. 8 - 12)
 • 1. Admin + General Introduction + Machine Learning Refresher
 • 2. Optimization Primer #1 (nonconvex optimization, stationary points and saddle points, optima, gradients) + Basic 1 Hidden Layer Neural Network (backpropagation)

• Week 2 (Jan. 15 - 19): Standard neural networks (MLK day break)
 • 3. Neural Network Optimization

• Week 3 (Jan. 22 - 26): Convolutional Networks
 • 5. Theoretical Implications + Convolutional Neural Networks (mostly in computer vision)
 • 6. Continued CNN, Visualization of CNN

• Week 4 (Jan. 29 – Feb. 2): Temporal Neural Models
 • 7. Temporal Neural Models (RNNs and LSTMs)
 • 8. Continued Temporal Neural Models (LSTMs, GRUs, stacked together with CNNs)

• Week 5 (Feb. 5 – Feb. 9): Deciding what project to work on
 • 9. Introduction of deep learning toolboxes (Caffe, Keras, automatic gradients)
 • 10. An overview of other neural models

• Week 6 (Feb. 12 - 16): Project proposals
 • 11. Project Proposals
 • 12. Neural Network Optimization (stochastic mini-batch gradient descent, momentum, dropout, learning rate and weight decay)
Approximate schedule

• Week 7 (Feb. 19 - 23): Neural Network Optimization, Unsupervised Approaches
 • 13. Neural Network Optimization (stochastic mini-batch gradient descent, momentum, dropout, learning rate and weight decay, automatic step-size methods)
 • 14. Unsupervised Deep Learning (Autoencoders and variational autoencoders)

• Week 8 (Feb. 26 – Mar. 2): Unsupervised Approaches
 • 15. Unsupervised Deep Learning II (GANs)
 • 16. ResNet and New Architectures

• Week 9 (Mar. 5 - Mar. 9): Deep Learning Applications
 • 17. More applications
 • 18. Deep Learning in Natural Language Processing (Guest lecture from the Algorithms for Computational Linguistics group)

• Week 10 (Mar. 12 - Mar. 16): Deep Reinforcement Learning
 • 19. Deep reinforcement learning (guest lecture by Alan Fern)
 • 20. Project Presentations

• Week 11 (Mar. 19 - Mar. 23): Finals Week
 • 21. Project Presentations