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Cutting Edge of Machine Learning: Deep Learning 

in Neural Networks

Engineering applications:
• Computer vision
• Speech recognition
• Natural Language 

Understanding
• Robotics
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Computer Vision – Image Classification

• Imagenet
• Over 1 million images, 1000 classes, 

different sizes, avg 482x415, color

• 16.42% Deep CNN dropout in 2012

• 6.66% 22 layer CNN (GoogLeNet) in 
2014

• 3.6%  (Microsoft Research Asia)
super-human performance in 2015

Sources: Krizhevsky et al ImageNet Classification with Deep Convolutional Neural Networks, Lee et al Deeply supervised nets 2014, 
Szegedy et al, Going Deeper with convolutions, ILSVRC2014, Sanchez & Perronnin CVPR 2011, http://www.clarifai.com/

Benenson, http://rodrigob.github.io/are_we_there_yet/build/classification_datasets_results.html
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Speech recognition on Android (2013)
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Impact on speech recognition
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Deep Learning

P. Di Lena, K. Nagata, and P. Baldi. 

Deep Architectures for Protein 

Contact Map Prediction. 

Bioinformatics, 28, 2449-2457, (2012)
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Deep Learning Applications

• Engineering:
• Computer Vision (e.g. image classification, segmentation)
• Speech Recognition
• Natural Language Processing (e.g. sentiment analysis, translation)

• Science:
• Biology (e.g. protein structure prediction, analysis of genomic data)
• Chemistry (e.g. predicting chemical reactions)
• Physics (e.g. detecting exotic particles)

• and many more
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Penetration into mainstream media
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Aha…
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Machine learning before Deep 
Learning
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Typical goal of machine learning

Label: “Motorcycle”
Suggest tags
Image search
…

Speech recognition
Music classification
Speaker identification
…

Web search
Anti-spam
Machine translation
… 

text

audio

images/video

Input: X Output: Y

ML

ML

ML

(Supervised) 
Machine learning:

Find 𝒇, so that 𝒇(𝑿) ≈ 𝒀
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e.g.

“motorcycle”ML

12



e.g.
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Basic ideas

• Turn every input into a vector 𝒙

• Use function estimation tools to estimate the function 𝑓(𝒙)

• Use observations 𝑥1, 𝑦1 , 𝑥2, 𝑦2 , 𝑥3, 𝑦3 , … 𝑥𝑛, 𝑦𝑛 to train
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Linear classifiers:

• Our model is:

Parameters
Vector [d x 1]

Input
[d x 1]

Classifier
Result
[1 x 1]

Bias
(scalar)

Usually refer 𝐰, 𝑏 as w



Linear Classifiers



What does this classifier do?
• Scores input based on linear combination of features

• > 0 above hyperplane

• < 0 below hyperplane

• Changes in weight vector (per classifier)
• Rotate hyperplane

• Changes in Bias
• Offset hyperplane from origin



Optimization of parameters
• Want to find w that achieves best result

• Empirical Risk Minimization principle
• Find w that 

• Real goal (Bayes classifier):
• Find w that

• Bayes error: Theoretically optimal error 

min
𝐰



𝑖=1

𝑛

𝐿(𝑦𝑖 , 𝑓 𝐱𝑖; 𝐰 )

min
𝐰
𝐄[𝐿𝑐(𝑦𝑖 , 𝑓 𝐱𝑖; 𝐰 )] 𝐿𝑐: ቊ

1, 𝑦 ≠ 𝑓(𝑥)
0, 𝑦 = 𝑓(𝑥)



Loss Function: Some examples
• Binary: 

• L1/L2

• Logistic

• Hinge (SVM)

• Lots more
• e.g. treat “most offending incorrect answer” in a special 

way

𝐿𝑖 = |𝑦𝑖 −𝒘⊤𝒙𝑖|

𝐿𝑖 = 𝑦𝑖 −𝒘⊤𝒙𝑖
2

𝐿𝑖 = log(1 + 𝑒𝑦𝑖𝑓 𝑥𝑖 )

𝑦 ∈ {−1,1}

𝐿𝑖 = max(0,1 − 𝑦𝑖𝑓 𝑥𝑖 )



Is linear sufficient?

• Many interesting functions (as well as some non-
interesting functions) not linearly separable



Model: Expansion of Dimensionality

• Representations:
• Simple idea: Quadratic expansion

• A better idea: Kernels

• Another idea: Fourier domain representations (Rahimi and Recht 2007)

• Another idea: Sigmoids (early neural networks)

𝑥1, 𝑥2, … , 𝑥𝑑 ↦ [𝑥1
2, 𝑥2

2, … , 𝑥𝑑
2, 𝑥1𝑥2, 𝑥1𝑥3, … , 𝑥𝑑−1𝑥𝑑]

𝐾 𝑥, 𝑥𝑖 = exp(−𝛽||𝑥𝑖 − 𝑥||2) 𝑓 𝑥 =

𝑖

𝛼𝑖𝐾(𝑥, 𝑥𝑖)

cos 𝐰⊤𝐱 + 𝑏 ,𝐰 ∼ 𝑁𝑑 0, 𝛽𝐼 , 𝑏 ∼ 𝑈[0,1]

s𝑖𝑔𝑚𝑜𝑖𝑑 𝐰⊤𝐱 + 𝑏 , optimized 𝐰



Distance-based Learners (Gaussian SVM)

SVM: Linear



Distance-based Learners (kNN)



“Universal Approximators”

• Many non-linear function estimators are proven as “universal 
approximators”
• Asymptotically (training examples -> infinity), they are able to recover the 

true function with a low error

• They also have very good learning rates with finite samples

• For almost all sufficiently smooth functions

• This includes:
• Kernel SVMs

• 1-Hidden Layer Neural Networks

• Essentially means we are “done” with machine learning
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Why is machine learning hard to work in real 
applications?

You see this: 

But the camera sees this:
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Raw representation

Input

Raw image

Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

pixel 1

pixel 2
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Raw representation

Input
Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
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pixel 1

pixel 2

Raw image
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Raw representation

Input
Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

pixel 1

pixel 2

Raw image
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What we want

Input

Motorbikes
“Non”-Motorbikes

Learning
algorithm

pixel 1

p
ix

el
 2

Feature 
representation

handlebars

wheel
E.g., Does it have Handlebars?  Wheels? 

Handlebars

W
h

ee
ls

Raw image Features
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Some feature representations

SIFT Spin image

HoG
RIFT

Textons GLOH 30



Some feature representations

SIFT Spin image

HoG
RIFT

Textons GLOH

Coming up with features is often difficult, time-
consuming, and requires expert knowledge. 
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Deep Learning: Let’s learn the representation!

pixels

edges

object parts

(combination 

of edges)

object models
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Historical Remarks
The high and low tides of neural networks
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d
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at
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D0

D1

D2

Input
Layer

Output
Layer

Destinations

Perceptron:

Activation
functions:

Learning:

•The Perceptron was introduced in 1957 by 
Frank Rosenblatt.

1950s – 1960s The Perceptron
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1970s -- Hiatus

• Perceptrons. Minsky and Papert. 1969
• Revealed the fundamental difficulty in linear perceptron models

• Stopped research on this topic for more than 10 years
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1980s, nonlinear neural networks (Werbos 1974, 
Rumelhart, Hinton, Williams 1986)

input vector

hidden 

layers

outputs

Back-propagate                

error signal to 

get derivatives 

for learning

Compare outputs with 

correct answer to get 

error signal
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1990s: Universal approximators

• Glorious times for neural networks (1986-1999):
• Success in handwritten digits

• Boltzmann machines

• Network of all sorts

• Complex mathematical techniques

• Kernel methods (1992 – 2010):
• (Cortes, Vapnik 1995), (Vapnik 1995), (Vapnik 1998)

• Fixed basis function

• First paper is forced to publish under “Support Vector Networks”
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Recognizing Handwritten Digits

• MNIST database
• 60,000 training, 10,000 testing

• Large enough for digits

• Battlefield of the 90s Algorithm Error Rate 
(%)

Linear classifier (perceptron) 12.0

K-nearest-neighbors 5.0

Boosting 1.26

SVM 1.4

Neural Network 1.6

Convolutional Neural Networks 0.95

With automatic distortions + ensemble + 
many tricks

0.23
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What’s wrong with backpropagation?

• It requires a lot of labeled training data

• The learning time does not scale well

• It is theoretically the same as kernel methods
• Both are “universal approximators”

• It can get stuck in poor local optima
• Kernel methods give globally optimal solution

• It overfits, especially with many hidden layers
• Kernel methods have proven approaches to control overfitting
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Caltech-101: Long-time computer vision 
struggles without enough data
• Caltech-101 dataset

• Around 10,000 images

• Certainly not enough!

Algorithm Accuracy (%)

SVM with Pyramid Matching Kernel (2005) 58.2%

Spatial Pyramid Matching (2006) 64.6%

SVM-KNN (2006) 66.2%

Sparse Coding + Pyramid Matching (2009) 73.2%

SVM Regression w object proposals (2010) 81.9%

Group-Sensitive MKL (2009) 84.3%

Deep Learning (pretrained on Imagenet) 
(2014)

91.4%

~80% is widely considered to be 
the limit on this dataset
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2010s: Deep representation learning

• Comeback: Make it deep!
• Learn many, many layers simultaenously
• How does this happen?
• Max-pooling  (Weng, Ahuja, Huang 1992)
• Stochastic gradient descent (Hinton 2002)
• ReLU nonlinearity (Nair and Hinton 2010), (Krizhevsky, Sutskever, Hinton 2012)

• Better understanding of subgradients

• Dropout (Hinton et al. 2012)
• WAY more labeled data

• Amazon Mechanical Turk (https://www.mturk.com/mturk/welcome)
• 1 million+ labeled data

• A lot better computing power
• GPU processing
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Convolutions: Utilize Spatial Locality

ConvolutionSobel filter

Convolution
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Convolutional Neural Networks

• CNN makes sense because locality is important for 
visual processing

Learning filters:
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A Convolutional Neural Network Model

224 x 224

224 x 224

112 x 112

56 x 56

28 x 28

14 x 14

7 x 7

Airplane Dog Car SUV Minivan Sign Pole……
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Images that respond to various filters

Zeiler and Fergus 2014 45



Recurrent Neural Network

• Temporal stability: history always repeats itself
• Parameter sharing across time
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What is the hidden assumption in your 
problem?
• Image Understanding: Spatial locality

• Temporal Models: Temporal (partial) stationarity

• How about your problem?

47



References

• (Weng, Ahuja, Huang 1992) J. Weng, N. Ahuja and T. S. Huang, "Cresceptron: a self-organizing neural network which grows adaptively," 
Proc. International Joint Conference on Neural Networks, Baltimore, Maryland, vol I, pp. 576-581, June, 1992.

• (Hinton 2002) Hinton, G. E..Training Products of Experts by Minimizing Contrastive Divergence. Neural Computation, 14, pp 1771-1800.

• (Hinton, Osindero and Teh 2006) Hinton, G. E., Osindero, S. and Teh, Y.. A fast learning algorithm for deep belief nets. Neural Computation 
18, pp 1527-1554.

• (Cortes and Vapnik 1995) Support-vector networks. C Cortes, V Vapnik. Machine learning 20 (3), 273-297

• (Vapnik 1995) V Vapnik. The Nature of Statistical Learning Theory. Springer 1995

• (Vapnik 1998) V Vapnik. Statistical Learning Theory. Wiley 1998.

• (Krizhevsky, Sutskever, Hinton 2012). ImageNet Classification with Deep Convolutional Neural Networks. NIPS 2012

• (Nair and Hinton 2010) V. Nair and G. E. Hinton.  Rectified linear units improve restricted boltzmann machines.  In Proc. 27th International 
Conference on Machine Learning, 2010

• (Hinton et al. 2012) G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever and R. R. Salakhutdinov. Improving neural networks by preventing 
co-adaptation of feature detectors. Arxiv 2012.

• (Zeiler and Fergus 2014) M.D. Zeiler, R. Fergus. Visualizing and Understanding Convolutional Networks. ECCV 2014

48

http://www.cse.msu.edu/~weng/research/CresceptronIJCNN1992.pdf
http://www.matthewzeiler.com/pubs/arxive2013/eccv2014.pdf

