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Cutting Edge of Machine Learning: Deep Learning
In Neural Networks
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Engineering applications:
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Computer Vision — Image Classification

* [magenet

* Over 1 million images, 1000 classes, .
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Speech recognition on Android (2013)

n Speech Recognition and Deep Learning

Posted by Vincent Vanhoucke, Research Scientist, Speech Team

The New York Times recently published an article about Google’s large scale deep learning project, which learns to
discover patterns in large datasets, including... cats on YouTubel!

What’s the point of building a gigantic cat detector you
might ask? When you combine large amounts of data,
large-scale distributed computing and powerful machine
learning algorithms, you can apply the technology to
address a large variety of practical problems.

8 pictures of cats \!/

WIth the launch o1 the latest Android platiorm release, Jelly
Bean, we've taken a significant step towards making that
technology useful: when you speak to your Android phone,
chances are, you are talking to a neural network trained to

recognize your speech,

Using neural networks for speech recognition is nothing
new: the first proofs of concept were developed in the late




Impact on speech recognition
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Critical Assessment of Techniques for Protein Structure Prediction
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The table summarizes the evaluation of predictions in 'RR'

The analyﬂs was performed at per domains basis: only predu:uuns for domains dassified

as "FM", "TBM/FM", "TBM hard" were considerad.

The groups were ranked according to sum of average Z-scores for two measures Acc and

The per target Z-scores were recalculated from the "deaned” distributions, where the

outher predictions (below mean - 2 std dev) were eliminated.

+ Domain classification:
= FM

TEM/FM
e TBM hard (max gdt_te = 50 )

» Contact Range: long

P. Di Lena, K. Nagata, and P. Baldi.
Deep Architectures for Protein
Contact Map Prediction.
Bioinformatics, 28, 2449-2457, (2012)
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(a) DST-NN archiecture

(b) Temporal input features for NN,

Figure 1: DST-NN architecture. (a) Overview. Each NN‘LJ represents a feed-forward neural network
trainable by back-propagation. (b) For a pair of residues (4, 7). the temporal inputs into NN,‘" con-
sist of the contact probabilities produced by the network at the previous level over a ncighf:nrhnod
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Deep Learning Applications

* Engineering:
 Computer Vision (e.g. image classification, segmentation)
e Speech Recognition
e Natural Language Processing (e.g. sentiment analysis, translation)

* Science:
* Biology (e.g. protein structure prediction, analysis of genomic data)
 Chemistry (e.g. predicting chemical reactions)
* Physics (e.g. detecting exotic particles)

. and many more



Penetration into mainstream media
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Aha...

The advances reflect the intensifying focus in Silicon Valley and elsewhere
on artificial intelligence.

Last month, the Toyota Motor Corporation announced a five-year, billion-

dollar investment to create a research center based next to Stanford
University to focus on artificial intelligence and robotics.

Also, a formerly obscure academic conference, Neural Information
Processing Systems, underway this week in Montreal, has doubled in size
since the previous year and has attracted a growing list of brand-name

corporate sponsors, including Apple for the first time.

“There is a sellers’ market right now — not enough talent to fill the demand
from companies who need them,” said Terrence Sejnowski, the director of
the Computational Neurobiology Laboratory at the Salk Institute for

Biological Studies in San Diego. “Ph.D. students are getting hired out of
graduate schools for salaries that are higher than faculty members who are
teaching them.”




Machine learning before Deep
Learning



Typical goal of machine learning
Qutput: Y

Label: “Motorcycle”
Suggest tags
Image search

(Supervised)
Speech recognition . . .
Music classification Machine Iearnlng'

Speaker identification

Find f,sothat f(X) = Y
e | Web search
: by Anti-spam
Machine translation

text
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Basic ideas

* Turn every input into a vector x

* Use function estimation tools to estimate the function f(x)

* Use observations (x4, v1), (x5, v5), (x3,V3), ... (x5, ¥,) to train



Linear classifiers:

y=mx +b Z
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« Our model is: f(x;,w,b) = wTx; + b Usually refer [w, b] as w

i r N

Classifier Parameters Input Bias
Result Vector [d x 1] [dx1] (scalar)
[1x 1]



Linear Classifiers




What does this classifier do?

 Scores input based on linear combination of features
e >0 above hyperplane
* <0 below hyperplane

* Changes in weight vector (per classifier)
* Rotate hyperplane

* Changes in Bias
* Offset hyperplane from origin



Optimization of parameters

 Want to find w that achieves best result

* Empirical Risk Minimization principle
* Find w that

min " L(yi, £ (xi; W)
i=1

* Real goal (Bayes classifier):

* Find w that m“i,nE[LC(yi,f(xi;w))] Lc{é'ii;gg

* Bayes error: Theoretically optimal error



Loss Function: Some examples

* Binary: ye{-L1}
e L1/L2
L = |y, —w'x]
Ly = (i — WTxi)z
* Logistic
L; = log(1 + eYif (x0)
* Hinge (SVM)
L;i = max(0,1 — y;f(x;))

 Lots more

Loss

* e.g. treat “most offending incorrect answer” in a special

way
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Is linear sufficient?

* Many interesting functions (as well as some non-
interesting functions) not linearly separable




Model: Expansion of Dimensionality

* Representations:

* Simple idea: Quadratic expansion

2 .2 2
[X1, X9, oo, Xg] P [X1, X5, i) X5, X1 X0, X1X3) eny Xg—1X4 ]

e A better idea: Kernels

K(x,x;) = exp(—=B]||x; — x||?) fx) = z a;K(x,x;)

l

* Another idea: Fourier domain representations (Rahimi and Recht 2007)
cos(w'x+b),w ~ N%(0,8I),b ~ U[0,1]
* Another idea: Sigmoids (early neural networks)

sigmoid(wTx + b), optimized w



Distance-based Learners (Gaussian SVM

SVM: Linear

SVM - Radial Kernel in Feature Space

Training Error: 0.270
Test Error: 0.288
Bayes Error:  0.210
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Distance-based Learners (kNN)

15-Nearest Neighbor Classifier

1-Nearest Neighbor Classifier




“Universal Approximators”

* Many non-linear function estimators are proven as “universal
approximators”

* Asymptotically (training examples -> infinity), they are able to recover the
true function with a low error

* They also have very good learning rates with finite samples
* For almost all sufficiently smooth functions

* This includes:
* Kernel SVMs
* 1-Hidden Layer Neural Networks

* Essentially means we are “done” with machine learning



Why is machine learning hard to work in real

applications?

You see this:
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Raw representation

pixel 1
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Input

4= Motorbikes
= “Non”-Motorbikes
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Raw representation
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Raw representation
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What we want

handlebars

- Feature

& —

Input
Raw image
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representation

E.g., Does it have Handlebars? Wheels?
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Some feature representations

Normalized patch Spin image
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Some feature representations

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.

HoG

EEEEE R S3aaaesss:
= HIIIII ARG
EEBEEE ===

= III-

Ellﬂll—\\l//

Textons

31



Deep Learning: Let’s learn the representation!

object models

object parts
(combination
of edges)

edges
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Historical Remarks

The high and low tides of neural networks



1950s — 1960s The Perceptron

*The Perceptron was introduced in 1957 by
Frank Rosenblatt.

Perceptron:

Activation
functions:

Learning:

y® = f[Z w® x;ﬁt}}
i
aw® = £(d® - y©)x

w0 = 1y ® 4 o, ©

- Destinations

34



19/0s -- Hiatus

* Perceptrons. Minsky and Papert. 1969
* Revealed the fundamental difficulty in linear perceptron models
» Stopped research on this topic for more than 10 years
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1980s, nonlinear neural networks (werbos 1974,
Rumelhart, Hinton, Williams 1986)

Back-propagate
error signal to
get derivatives
for learning

|

Compare outputs with
correct answer to get
error signal

outputs

hidden
layers

iInput vector
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1990s: Universal approximators

* Glorious times for neural networks (1986-1999):
e Success in handwritten digits
* Boltzmann machines
* Network of all sorts
* Complex mathematical techniques

* Kernel methods (1992 — 2010):
* (Cortes, Vapnik 1995), (Vapnik 1995), (Vapnik 1998)
* Fixed basis function
* First paper is forced to publish under “Support Vector Networks”

37



Recognizing Handwritten Digits

* MNIST database
* 60,000 training, 10,000 testing
e Large enough for digits
» Battlefield of the 90s

0000000000000020D0000
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L2724 222228A23222382
¥33313283%3333022%1,3833%32
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77017377 ¥%7177 1 17
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Algorithm

Linear classifier (perceptron)
K-nearest-neighbors

Boosting

SVM

Neural Network

Convolutional Neural Networks

With automatic distortions + ensemble +
many tricks

Error Rate
(%)

12.0
5.0
1.26
1.4
1.6
0.95

0.23
38



What’s wrong with backpropagation?

* It requires a lot of labeled training data
* The learning time does not scale well

* It is theoretically the same as kernel methods
* Both are “universal approximators”

* It can get stuck in poor local optima
* Kernel methods give globally optimal solution

* It overfits, especially with many hidden layers
* Kernel methods have proven approaches to control overfitting



Caltech-101: Long-time computer vision
struggles without enough data

* Caltech-101 dataset
* Around 10,000 images
* Certainly not enough!

~80% is widely considered to be
the limit on this dataset

Algorithm Accuracy (%)

baseball-bat

A

SVM with Pyramid Matching Kernel (2005) 58.2%
Spatial Pyramid Matching (2006) 64.6%
SVM-KNN (2006) 66.2%
Sparse Coding + Pyramid Matching (2009) 73.2%
SVM Regression w object proposals (2010) 81.9%
Group-Sensitive MKL (2009) 84.3%

Deep Learning (pretrained on Imagenet) 91.4%
(2014)

dog

ayac basketball-hoop
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2010s: Deep representation learning

e Comeback: Make it deep!
* Learn many, many layers simultaenously
* How does this happen?
* Max-pooling (Weng, Ahuja, Huang 1992)
» Stochastic gradient descent (Hinton 2002)
e ReLU nonlinearity (Nair and Hinton 2010), (Krizhevsky, Sutskever, Hinton 2012)
* Better understanding of subgradients
* Dropout (Hinton et al. 2012)
* WAY more labeled data

* Amazon Mechanical Turk (https://www.mturk.com/mturk/welcome)
* 1 million+ labeled data

A lot better computing power
* GPU processing



https://www.mturk.com/mturk/welcome

Convolutions: Utilize Spatial Locality

Sobel filter

Convolution
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Convolutional Neural Networks

Learning filters:

* CNN makes sense because locality is important for
visual processing

43



A Convolutional Neural Network Model
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Images that respond to various filters

Zeiler and Fergus 2014 45



Recurrent Neural Network

* Temporal stability: history always repeats itself
* Parameter sharing across time
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What is the hidden assumption in your
problem?

* Image Understanding: Spatial locality
* Temporal Models: Temporal (partial) stationarity
* How about your problem?
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