
Optimization for Machine 
Learning



Optimization for machine learning

• Many engineering disciplines cannot survive without optimization
• Including machine learning
• The generic ERM + regularization minimization:
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Minimize a sum of loss function on 
every training example



How to solve optimization problems

• First-order condition (Stationarity): 

• Necessary for optimality
• Not sufficient!
• Sufficient when convex (will talk about later)
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Try take some gradients

• The gradient of ୃ w.r.t. to ?

• The gradient of ୃ ଶ
w.r.t. to ?



Gradient Descent

: Step size (Learning rate)
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Line search, step size

• One needs the correct step size to converge faster
• In traditional optimization, in order to decide step-size, line search 

was often used on the descent direction
• Satisfy certain conditions (e.g. Armijo-Goldstein, Frank-Wolfe)



Gradient direction can be bad
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• What is ?
• What is at (0,0)?

• What is a good step size?

• That’s why usually need second-order information
• Curiously deep learning does not often use second-order information



Hessian

• The Hessian:  ଶ
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• A second-order Taylor expansion:
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Newton direction
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• e.g.
• Algorithm:

• Other variants of Newton-type methods:
• Quasi-Newton (e.g. BFGS, use an approximation of Hessian)
• Limited Memory Quasi-Newton (use a low-rank Hessian)
• Barzilai-Borwein (use diagonal of Hessian)
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Convexity

• F is convex if

• First order condition:

• Second order condition:
• ଶ
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Positive semi-definiteness review

• Important concept in linear algebra

• ୃ

• All eigenvalues of are nonnegative
• All principal minors are nonnegative

• Positive-definiteness:
• (Change >=0 to >0)



Saddle Point

• Stationarity doesn’t necessarily mean
local optimum

• Simple example: ଶ ଶ

•

• Definition of local optimum
• Stationary + Locally (strongly)
convex



Nonconvexity


