Optimization for Machine
Learning




Optimization for machine learning

* Many engineering disciplines cannot survive without optimization
* Including machine learning
* The generic ERM + regularization minimization:

min )" L(f (), v0) + O(W)

Minimize a sum of loss function on
every training example



How to solve optimization problems

min f(w)
of of  of|
Viw) = ow, dw,’ " dwy
* First-order condition (Stationarity):
Vfw) =0

* Necessary for optimality
* Not sufficient!
« Sufficient when f(w) convex (will talk about later)



Try take some gradients

* The gradient of w'x w.r.t. to w?

2
* The gradient of (W'x — y)~ w.rt. to w?



Gradient Descent

min f(w)

while [|[V(w)|| > €

w=w—aVfw) o /

a: Step size (Learning rate) \-\\__’/




Line search, step size

* One needs the correct step size to converge faster

* In traditional optimization, in order to decide step-size, line search
was often used on the descent direction
* Satisfy certain conditions (e.g. Armijo-Goldstein, Frank-Wolfe)
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Gradient direction can be bad

+ min (wy —1)? +100(w, — 1) (W~
oo (W3

* Whatis V'f (w)?
* What is V'f (w) at (0,0)?
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* What is a good step size? Vf _~ OV W = W‘O\VJL
e That’s why usually need second-order information g

e Curiously deep learning does not often use second-order information



Hessian

02fJow? - 02f /0w, 0wy
 The Hessian: H = V2f = : . :

azf/ai/vdawl azf/.awé
* A second-order Taylor expansion: )
fw) = fla) + Vyf(a)(w—a) + 5 (w- a)'H@(w — a) + o(||lw — a||?)
Vi fm + M) (W)= 0



Newton direction

d=[P2fw)] 7w

min (Wl - 1)2 + 100(W2 - 1)2

W1,W>

. e.g.

* Algorithm: while [[Tf W)l > €

w=w-—ad Hj

e Other variants of Newton-type methods: —
e Quasi-Newton (e.g. BFGS, use an approximation of Hessian)
* Limited Memory Quasi-Newton (use a low-rank Hessian)

\)

 Barzilai-Borwein (use diagonal of Hessian) ?
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Convexity

* Fis convex if

Vx,x, € X,Vt € [0,1],
fltxy + (1 —0)xp) < tf(x) + (1 —6)f(x3)

* First order condition: (@) + (1 - 0 (22
f(y) Zf(ai)+Vf(EC)T(y—gj) ftzy + (1 = t)z2)

e Second order condition:
onf(x)ZO [ r try + (1 - t)




Positive semi-definiteness review

* Important concept in linear algebra

*Mp.s.d.©z"Mz >0 —

* All eigenvalues of M are nonnegative
* All principal minors are nonnegative

e Positive-definiteness:
* (Change >=0 to >0)




Saddle Point

e Stationarity doesn’t necessarily mean
local optimum

e Simple example: z = x2 — y?
cx=0,y=0
* Definition of local optimum

 Stationary + Locally (strongly)
convex




Nonconvexity
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