Neural Network Optimization 1

CS 519: Deep Learning, Winter 2018

Fuxin Li

With materials from Zsolt Kira

Backpropagation learning of a network

- The algorithm
 - 1. Compute a forward pass on the compute graph (DAG) from the input to all the outputs
 - 2. Backpropagate all the outputs back all the way to the input and collect all gradients ${\bf G}$
 - 3. $W = W \alpha G$ for all the weights in all layers

Modules (Layers)

- Each layer can be seen as a module
- Given input, return
 - Output $f_a(x)$
 - Network gradient $\frac{\partial f_a}{\partial x}$
 - Gradient of module parameters $\frac{\partial f_a}{\partial w_a}$
- During backprop, propagate/update
 - Backpropagated gradient $\frac{\partial E}{\partial f_a}$

$$\frac{\partial E}{\partial W_{k}} = \frac{\partial E}{\partial f_{k}} g(f_{k-1}(x)) = \frac{\partial E}{\partial f_{k+1}} \frac{\partial f_{k+1}}{\partial f_{k}} g(f_{k-1}(x))$$

where $f_{k}(x) = w_{k}^{\mathsf{T}} g(f_{k-1}(x)), f_{0}(x) = x$

The abundance of online layers

Core Layers	Convolutional Layers	Advanced Activations Layers
Layer	Convolution1D	LeakyReLU
Methods	Convolution2D	PReLU
Masking	May Dealing 1D	ELU
TimeDistributedMerge	MaxPooling1D	ParametricSoftplus
Merge	AveragePooling1D	ThresholdedLinear
Dropout	MaxPooling2D	ThresholdedReLU
Activation	AveragePooling2D	Normalization Layers
Reshape	UpSampling1D	BatchNormalization
Permute	UpSampling2D	Embedding Layers
Flatten	ZeroPadding1D	Embedding
RepeatVector	ZeioraduliigiD	Noise layers
Dense	ZeroPadding2D	GaussianNoise
ActivityRegularization	Recurrent Layers	GaussianDropout
TimeDistributedDense	Recurrent	
AutoEncoder	SimpleRNN	
MaxoutDense	CDU	
Lambda	GRO	
LambdaMerge	LSTM	
Siamese		
Highway		

Learning Rates

- Gradient descent is only guaranteed to converge with *small enough* learning rates
 - So that's a sign you should decrease your learning rate if it explodes
- Example:
 - $C(w) = \frac{1}{2}w^2$
 - Learning rate of $\alpha = 0.5$
 - $\alpha = 1$
 - $\alpha = 2$
 - $\alpha = 3$

 $W_{0} = 1$ $W_{1} = 1 - 0.J \cdot 1$ = 0.J $M_{2} = 0.5 - 0.5 \cdot 0.5$ = 0.2t

Weight decay regularization

• Instead of using a normal step, add a

 $\mathbf{G} = \mathbf{G} + \lambda \mathbf{W}$

• This corresponds to:

$$\min_{\mathbf{W}} \frac{1}{N} \sum_{i=1}^{N} l(f(x_i; \mathbf{W}), y_i) + \frac{1}{2} \lambda \|\mathbf{W}\|^2$$

• Early stopping as well!

• Help generalization

l = W - 2GW = W - 2G -

$$(D_1 = -26_0)W_1 = W_0 - 26_0$$

 $p_2 = -\alpha_\mu G_0 - \alpha G_1$ $W_2 = W_1 - \alpha_\mu G_0$

 $W_{3} = W_{2} - a_{\mu}^{2} G_{0}$

• Basic updating equation (with momentum):

Momentum

$$D_0 = 0$$
$$D_{t+1} = \mu D_t - \alpha G_t$$
$$W_{t+1} = W_t + D_{t+1}$$

• $\mu = 0.6 \sim 0.9$, a lot of "inertia" in optimization

• Check the previous example with a momentum of 0.5

Computing the energy function and gradient

Usual ERM energy function

$$\min_{W} E(f) = \sum_{i=1}^{n} L(f(x_i; W), y_i)$$
$$\nabla_{W} E = \sum_{i=1}^{n} \frac{\partial L(f(x_i; W), y_i)}{\partial W}$$

- One problem:
 - Very slow to compute when *n* is large
 - One gradient step takes long time!
 - Approximate?

Stochastic Mini-batch Approximation

$$\begin{split} \min_{W} E(f) &= \sum_{i=1}^{n} L(f(x_i; W), y_i) \\ \nabla_{W} E &= \sum_{i=1}^{n} \frac{\partial L(f(x_i; W), y_i)}{\partial W} \\ \nabla_{W} \tilde{E} &\approx \sum_{i \in N_m} \frac{\partial L(f(x_i; W), y_i)}{\partial W} \end{split}$$

• Ensure the expectation is the same

$$\mathbb{E}\left(\nabla_{W}\tilde{E}\right) = \nabla_{W}E$$

- Uniformly sample every time
 - Sample how many? 1 (SGD) 256 (Mini-batch SGD)
 - Common mini-batch size is 32-256
 - In practice: dependent on GPU memory size

 $N_m \subset \{1, \dots, n\}$ ACTAN, W,

In Practice

- Randomly re-arrange the input examples
- Use a fixed order on the input examples
- Define an *iteration* to be every time the gradient is computed

 $(n-23\pm7)$

 An *epoch* to be every time that all the input examples is looped through once

A practical run of training a neural network

- Check:
 - Energy
 - Training error
 - Validation error

Data Augmentation

- Create artificial data to increase the size of the dataset
- Example: Elastic deformations on MNIST

Figure 2. Top left: Original image. Right and bottom: Pairs of displacement fields with various smoothing, and resulting images when displacement fields are applied to the original image.

Training Image

Data Augmentation

One of the easiest ways to prevent overfitting is to augment the dataset

Training Image

CIFAR-10 dataset

- 60,000 images in 10 classes
 - 50,000 training
 - 10,000 test
- Designed to mimic MNIST
- 32x32
- Assignment (will post on Canvas with more explicity): frog
 - Write your own backpropagation NN to test on CIFAR-10
 horse ship

airplane automobile bird cat deer dog

truck

