Theoretical Implications

CS 535: Deep Learning



Machine Learning Theory: Basic setup

* Generic supervised learning setup:

* For (x;,V;)1 5 i.i.d. drawn from the joint distribution P(x, y), find a
best function f € F that minimizes the error E, ,[L(f (x), y)]

e L is aloss function, e.g.
 Classification:
L) #y
L(f(),y) = {0’ ) = 7
* Regression: L(f(x),y) = (f(x) — y)?

e F is a function class (consists many functions, e.g. all linear functions, all
qguadratic functions, all smooth functions, etc.)



Machine Learning Theory: Generalization

* Machine learning theory is about generalizing to unseen examples
* Not the training set error!
* And those theory doesn’t always hold (holds with probability less than 1)

* A generic machine learning generalization bound:

* For (xi,y;)1..n drawn from the joint distribution P(x, y),
with probability 1 — & How to represent

“flexibility”? That’s a
1 n / course on ML theory
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What is “flexibility”?
* Roughly, the more functions in F, the more flexible it is

* Function class: all linear functions F: {f (x)|f(x) = w'x + b}

* Not very flexible, cannot even solve XOR
* Small “flexibility” term, testing error not much more than training error

* Function class: all 9-th degree polynomials

F{fCOIf () = wix® + )
» Super flexible
* Big “flexibility” term, testing error can be much more than training



Flexibility and overfitting

* For a very flexible function class

* Training error is NOT a good measure of testing
!
error

* Therefore, out-of-sample error estimates are
needed
* Separate validation set to measure the error
* Cross-validation
» K-fold
* Leave-one-out

* Many times this will show to be worse than the
training error with a flexible function class




Another twist of the generalization inequality

* Nevertheless, you still want training error to be small
* So you don’t always want to use linear classifiers/regressors

If this is 60% error... Add-on term

1 n / /
Ery(F() #9) 7 ) LG,y +O(F, 6)
1=1
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How to deal with it when you do use a flexible
function class

* Regularization
* To make the chance of choosing a highly flexible function to be low
* Example:

e Ridge Regression:
2
min(wTX —Y)" + A||w||?
w

In order to choose a w with big ||w||?
you need to overcome this term

e Kernel SVM

mfinz L(F G, v) + AlIf112

In order to choose a very unsmooth function
f you need to overcome this term



Bayesian Interpretation of Regularization

* Assume that a certain prior of the parameters exist, and optimize for
the MAP estimate

* Example:
» Ridge Regression: Gaussian prior on w:P(w) = C exp(—1||w]| |2)

min(wTX = ¥)* + A||w]||?
w

* Kernel SVM: Gaussian process prior on f (too complicated to explain simply..)

mfinz L(F G, v) + AlIf112



Universal Approximators

* Universal Approximators

e (Barron 1994, Bartlett et al. 1999) Meaning that they can approximate (learn)

any smooth function efficiently (meaning using a polynomial number of
hidden units)

e Kernel SVM
e Neural Networks
e Boosted Decision Trees

* Machine learning cannot do much better
* No free lunch theorem



No Free Lunch

* (Wolpert 1996, Wolpert 2001) For any 2 learning algorithms,
averaged over any training set d and over all possible distributions P,
their average error is the same

* Practical machine learning only works because of certain correct
assumptions about the data

* SVM succeeds by successfully representing the general smoothness
assumption as a convex optimization problem (with global optimum)

* However, if one goes for more complex assumptions, convexity is very hard to
achieve!



High-dimensionality

Philosophical discussion about high-dimensional spaces



Distance-based Algorithms

* K-Nearest Neighbors: weighted average of k-nearest neighbors

. o 15-Nearest Neighbor Classifier
1-Nearest Neighbor Classifier 9
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Curse of Dimensionality

* Dimensionality brings
interesting effects:

* In a 10-dim space, to
cover 10% of the data
in a unit cube, one needs
a box to cover 80% of the
range
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FIGURE 2.6. The curse of dimenstonality ts well illustrated by a subcubical
neighborhood for uniform data in a unit cube. The figure on the right shows the
side-length of the subcube needed to capture a fraction r of the volume of the data,
for different dimensions p. In ten dimensions we need to cover 80% of the range
of each coordinate to capture 10% of the data.



High Dimensionality Facts

* Every point is on the boundary

* With N uniformly distributed points in a p-dimensional ball, the closest point
to the origin has a median distance of
) 1NN 1/
d(p, N) = (1 — = )
2
e Every vector is almost always orthogonal to each other
* Pick 2 unit vectors x; and x,, then the probability that

lo
cos(xy, ) = |7 25| = |2

p

is less than 1/p



Avoiding the Curse

* Regularization helps us with the curse
* Smoothness constraints also grow stronger with the dimensionality!
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* We do not suffer from the curse if we ONLY estimate sufficiently smooth
functions!
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Rademacher and Gaussian
Complexity



Rademacher and Gaussian Complexity

Define the random variable

nzg?f

where oy, ... o are independent uniform {£1}-valued random variables. Then the Rademacher
complexity of ' is R,(F) = ER,(F). Similarly, define the random variable

Xl,...,Xn].

feF

R 2
G,(F)=E |sup|— g f(X)|| X1,... . Xy
where g1, ..., g, are independent Gaussian N (0,1) random variables. The Gaussian com-

plexity of F is G, (F) = EG,(F).

Lemma 4 There are absolute constants ¢ and C' such that for every class F' and every

integer n, cR,(F) < G,(F) < ClnnR,(F).



Risk Bound

Theorem 5 Let P be a probability distribution on X x {x1}, let F' be a set of {x1}-valued

functions defined on X, and let (X;,Y;);" ¢ be training samples drawn according to P".

(b) With probability at least 1 — 0, every function f in F' satisfies

R, (F) In(1/0)
2 +\/ 2n

P(Y # f(X)) < By(Y # f(X)) +



Complexity Bound for NN

Theorem 18 Suppose that o : R — |—1,1] has Lipschitz constant L and satisfies c(0) = 0.
Define the class computed by a two-layer neural network with 1-norm weight constraints as

F = {a;' — Zwia(w cx) ||lwllr <1, v < B} .
i

: k
Then for xi,...,xn tn RY,

. cLB(In k)/?
Gp(F) < nk) max Z(%j—%’)za

< - ,
JsJ \ —

where x; = (Ti1, ... , Tik).
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