Theoretical Implications

CS 535: Deep Learning
Machine Learning Theory: Basic setup

• Generic supervised learning setup:

• For \((x_i, y_i)_{1 \ldots n}\) i.i.d. drawn from the joint distribution \(P(x, y)\), find a best function \(f \in F\) that minimizes the error \(E_{x,y}[L(f(x), y)]\)

 • \(L\) is a loss function, e.g.

 • Classification:

 \[
 L(f(x), y) = \begin{cases}
 1, & f(x) \neq y \\
 0, & f(x) = y
 \end{cases}
 \]

 • Regression: \(L(f(x), y) = (f(x) - y)^2\)

 • \(F\) is a function class (consists many functions, e.g. all linear functions, all quadratic functions, all smooth functions, etc.)
Machine Learning Theory: Generalization

- Machine learning theory is about **generalizing** to unseen examples
 - **Not** the training set error!
 - And those theory **doesn’t always** hold (holds with probability less than 1)

- A generic machine learning generalization bound:
 - For \((x_i, y_i)_{1...n}\) drawn from the joint distribution \(P(x, y)\), with probability \(1 - \delta\)

\[
E_{x,y}(f(x) \neq y) \leq \frac{1}{n} \sum_{i=1}^{n} L(f(x_i), y_i) + \Omega(F, \delta)
\]

- Error on the whole distribution
- Error on the training set
- Flexibility of the function class

How to represent “flexibility”? That’s a course on ML theory
What is “flexibility”?

• Roughly, the more functions in F, the more flexible it is

• Function class: all linear functions $F: \{f(x) | f(x) = w^T x + b\}$
 • Not very flexible, cannot even solve XOR
 • Small “flexibility” term, testing error not much more than training error

• Function class: all 9-th degree polynomials $F: \{f(x) | f(x) = w_1^T x^9 + \cdots \}$
 • Super flexible
 • Big “flexibility” term, testing error can be much more than training
Flexibility and overfitting

• For a very flexible function class
 • Training error is **NOT** a good measure of testing error
 • Therefore, out-of-sample error estimates are needed
 • Separate validation set to measure the error
 • Cross-validation
 • K-fold
 • Leave-one-out
 • Many times this will show to be worse than the training error with a flexible function class
Another twist of the generalization inequality

• Nevertheless, you still want training error to be **small**
• So you don’t always want to use linear classifiers/regressors

\[
E_{x,y}(f(x) \neq y) \leq \frac{1}{n} \sum_{i=1}^{n} L(f(x_i), y_i) + \Omega(F, \delta)
\]

Error on the training set

If this is 60% error...

Add-on term

Error on the whole distribution

Flexibility of the function class
How to deal with it when you do use a flexible function class

• Regularization
 • To make the chance of choosing a highly flexible function to be low
 • Example:
 • Ridge Regression:
 \[
 \min_w (w^T X - Y)^2 + \lambda \|w\|^2
 \]
 In order to choose a \(w \) with big \(\|w\|^2 \)
 you need to overcome this term
 • Kernel SVM
 \[
 \min_f \sum_i L(f(x_i), y_i) + \lambda \|f\|^2
 \]
 In order to choose a very unsmooth function \(f \)
 you need to overcome this term
Bayesian Interpretation of Regularization

- Assume that a certain prior of the parameters exist, and optimize for the MAP estimate
 - Example:
 - Ridge Regression: Gaussian prior on w: $P(w) = C \exp(-\lambda ||w||^2)$
 \[
 \min_w (w^\top X - Y)^2 + \lambda ||w||^2
 \]
 - Kernel SVM: Gaussian process prior on f (too complicated to explain simply..)
 \[
 \min_f \sum_i L(f(x_i), y_i) + \lambda ||f||^2
 \]
Universal Approximators

• Universal Approximators
 • (Barron 1994, Bartlett et al. 1999) Meaning that they can approximate (learn) any smooth function efficiently (meaning using a polynomial number of hidden units)
 • Kernel SVM
 • Neural Networks
 • Boosted Decision Trees

• Machine learning cannot do much better
 • No free lunch theorem
No Free Lunch

• (Wolpert 1996, Wolpert 2001) For any 2 learning algorithms, averaged over any training set d and over all possible distributions P, their average error is the same

• Practical machine learning only works because of certain correct assumptions about the data
 • SVM succeeds by successfully representing the general smoothness assumption as a convex optimization problem (with global optimum)
 • However, if one goes for more complex assumptions, convexity is very hard to achieve!
High-dimensionality

Philosophical discussion about high-dimensional spaces
Distance-based Algorithms

- K-Nearest Neighbors: weighted average of k-nearest neighbors
Curse of Dimensionality

• Dimensionality brings interesting effects:

• In a 10-dim space, to cover 10% of the data in a unit cube, one needs a box to cover 80% of the range

Figure 2.6. The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube. The figure on the right shows the side-length of the subcube needed to capture a fraction r of the volume of the data, for different dimensions p. In ten dimensions we need to cover 80% of the range of each coordinate to capture 10% of the data.
High Dimensionality Facts

• Every point is on the boundary
 • With N uniformly distributed points in a p-dimensional ball, the closest point to the origin has a median distance of
 $$d(p, N) = \left(1 - \frac{1}{2} \frac{1}{N}\right)^{1/p}$$

• Every vector is almost always orthogonal to each other
 • Pick 2 unit vectors x_1 and x_2, then the probability that
 $$\cos(x_1, x_2) = |x_1^\top x_2| \geq \sqrt{\frac{\log p}{p}}$$
 is less than $1/p$
Avoiding the Curse

• Regularization helps us with the curse
 • Smoothness constraints also grow stronger with the dimensionality!

\[
\int |f'(x)| dx \leq C
\]

\[
\int \left| \frac{\partial f}{\partial x_1} \right| dx_1 + \int \left| \frac{\partial f}{\partial x_2} \right| dx_2 + \cdots + \int \left| \frac{\partial f}{\partial x_p} \right| dx_p \leq C
\]

• We do not suffer from the curse if we ONLY estimate sufficiently smooth functions!
Rademacher and Gaussian Complexity

Why would CNN make sense
Rademacher and Gaussian Complexity

Define the random variable

\[\hat{R}_n(F) = \mathbb{E} \left[\sup_{f \in F} \left| \frac{2}{n} \sum_{i=1}^{n} \sigma_i f(X_i) \right| \right| \mathbb{E} \left[X_1, \ldots, X_n \right] , \]

where \(\sigma_1, \ldots, \sigma_n \) are independent uniform \(\{ \pm 1 \} \)-valued random variables. Then the Rademacher complexity of \(F \) is \(R_n(F) = \mathbb{E} \hat{R}_n(F) \). Similarly, define the random variable

\[\hat{G}_n(F) = \mathbb{E} \left[\sup_{f \in F} \left| \frac{2}{n} \sum_{i=1}^{n} g_i f(X_i) \right| \right| \mathbb{E} \left[X_1, \ldots, X_n \right] , \]

where \(g_1, \ldots, g_n \) are independent Gaussian \(N(0,1) \) random variables. The Gaussian complexity of \(F \) is \(G_n(F) = \mathbb{E} \hat{G}_n(F) \).

Lemma 4 There are absolute constants \(c \) and \(C \) such that for every class \(F \) and every integer \(n \), \(cR_n(F) \leq G_n(F) \leq C \ln n R_n(F) \).
Risk Bound

Theorem 5 Let P be a probability distribution on $\mathcal{X} \times \{\pm 1\}$, let F be a set of $\{\pm 1\}$-valued functions defined on \mathcal{X}, and let $(X_i, Y_i)_{i=1}^{n}$ be training samples drawn according to P^n.

(b) With probability at least $1 – \delta$, every function f in F satisfies

$$P(Y \neq f(X)) \leq \hat{P}_n(Y \neq f(X)) + \frac{R_n(F)}{2} + \sqrt{\frac{\ln(1/\delta)}{2n}}.$$
Theorem 18 Suppose that $\sigma : \mathbb{R} \to [-1, 1]$ has Lipschitz constant L and satisfies $\sigma(0) = 0$. Define the class computed by a two-layer neural network with 1-norm weight constraints as

$$F = \left\{ x \mapsto \sum_i w_i \sigma(v_i \cdot x) : \|w\|_1 \leq 1, \|v_i\|_1 \leq B \right\}.$$

Then for x_1, \ldots, x_n in \mathbb{R}^k,

$$\hat{G}_n(F) \leq \frac{cLB(\ln k)^{1/2}}{n} \max_{j,j'} \sqrt{\sum_{i=1}^n (x_{ij} - x_{ij'})^2},$$

where $x_i = (x_{i1}, \ldots, x_{ik})$.
References

