Theoretical Implications

CS 535: Deep Learning

Machine Learning Theory: Basic setup

- Generic supervised learning setup:
- For $(x_i, y_i)_{1...n}$ **i.i.d.** drawn from the joint distribution P(x, y), find a best function $f \in F$ that minimizes the error $E_{x,y}[L(f(x), y)]$
 - *L* is a loss function, e.g.
 - Classification:

$$L(f(x), y) = \begin{cases} 1, f(x) \neq y \\ 0, f(x) = y \end{cases}$$

- Regression: $L(f(x), y) = (f(x) y)^2$
- F is a function class (consists many functions, e.g. all linear functions, all quadratic functions, all smooth functions, etc.)

Machine Learning Theory: Generalization

- Machine learning theory is about generalizing to unseen examples
 - Not the training set error!
 - And those theory doesn't always hold (holds with probability less than 1)
- A generic machine learning generalization bound:
 - For $(x_i, y_i)_{1...n}$ drawn from the joint distribution P(x, y), with probability 1δ

How to represent "flexibility"? That's a course on ML theory

What is "flexibility"?

• Roughly, the more functions in F, the more flexible it is

- Function class: all linear functions $F:\{f(x)|f(x)=w^{T}x+b\}$
 - Not very flexible, cannot even solve XOR
 - Small "flexibility" term, testing error not much more than training error
- Function class: all 9-th degree polynomials

$$F: \{f(x)|f(x) = w_1^{\mathsf{T}} x^9 + \cdots \}$$

- Super flexible
- Big "flexibility" term, testing error can be much more than training

Flexibility and overfitting

- For a very flexible function class
 - Training error is NOT a good measure of testing error
 - Therefore, out-of-sample error estimates are needed
 - Separate validation set to measure the error
 - Cross-validation
 - K-fold
 - Leave-one-out
 - Many times this will show to be worse than the training error with a flexible function class

Another twist of the generalization inequality

- Nevertheless, you still want training error to be small
- So you don't always want to use linear classifiers/regressors

How to deal with it when you do use a flexible function class

- Regularization
 - To make the chance of choosing a highly flexible function to be low
 - Example:
 - Ridge Regression:

$$\min_{w} (w^{\mathsf{T}}X - Y)^2 + \lambda ||w||^2$$
In order to choose a w with big $||w||^2$

you need to overcome this term

Kernel SVM

$$\min_{f} \sum_{i} L(f(x_i), y_i) + \lambda ||f||^2$$

In order to choose a very unsmooth function f you need to overcome this term

Bayesian Interpretation of Regularization

- Assume that a certain prior of the parameters exist, and optimize for the MAP estimate
 - Example:
 - Ridge Regression: Gaussian prior on w:P(w) = C $\exp(-\lambda ||w||^2)$ $\min_{w} (w^{\mathsf{T}}X Y)^2 + \lambda ||w||^2$
 - Kernel SVM: Gaussian process prior on f (too complicated to explain simply..)

$$\min_{f} \sum_{i} L(f(x_i), y_i) + \lambda ||f||^2$$

Universal Approximators

- Universal Approximators
 - (Barron 1994, Bartlett et al. 1999) Meaning that they can approximate (learn) any smooth function efficiently (meaning using a polynomial number of hidden units)
 - Kernel SVM
 - Neural Networks
 - Boosted Decision Trees
- Machine learning cannot do much better
 - No free lunch theorem

No Free Lunch

- (Wolpert 1996, Wolpert 2001) For any 2 learning algorithms, averaged over any training set d and over all possible distributions P, their average error is the same
- Practical machine learning only works because of certain correct assumptions about the data
 - SVM succeeds by successfully representing the general smoothness assumption as a convex optimization problem (with global optimum)
 - However, if one goes for more complex assumptions, convexity is very hard to achieve!

High-dimensionality

Philosophical discussion about high-dimensional spaces

Distance-based Algorithms

• K-Nearest Neighbors: weighted average of k-nearest neighbors

15-Nearest Neighbor Classifier

Curse of Dimensionality

- Dimensionality brings interesting effects:
- In a 10-dim space, to cover 10% of the data in a unit cube, one needs a box to cover 80% of the range

FIGURE 2.6. The curse of dimensionality is well illustrated by a subcubical neighborhood for uniform data in a unit cube. The figure on the right shows the side-length of the subcube needed to capture a fraction r of the volume of the data, for different dimensions p. In ten dimensions we need to cover 80% of the range of each coordinate to capture 10% of the data.

High Dimensionality Facts

- Every point is on the boundary
 - With N uniformly distributed points in a p-dimensional ball, the closest point to the origin has a median distance of

$$d(p, N) = \left(1 - \frac{1}{2}^{1/N}\right)^{1/p}$$

- Every vector is almost always orthogonal to each other
 - Pick 2 unit vectors x_1 and x_2 , then the probability that

$$\cos(x_1, x_2) = |x_1^{\mathsf{T}} x_2| \ge \sqrt{\frac{\log p}{p}}$$

is less than 1/p

Avoiding the Curse

- Regularization helps us with the curse
 - Smoothness constraints also grow stronger with the dimensionality!

$$\int |f'(x)| dx \le C$$

$$\int \left| \frac{\partial f}{\partial x_1} \right| dx_1 + \int \left| \frac{\partial f}{\partial x_2} \right| dx_2 + \dots + \int \left| \frac{\partial f}{\partial x_p} \right| dx_p \le C$$

 We do not suffer from the curse if we ONLY estimate sufficiently smooth functions!

Rademacher and Gaussian Complexity

Why would CNN make sense

Rademacher and Gaussian Complexity

Define the random variable

$$\hat{R}_n(F) = \mathbf{E} \left[\sup_{f \in F} \left| \frac{2}{n} \sum_{i=1}^n \sigma_i f(X_i) \right| \middle| X_1, \dots, X_n \right] ,$$

where $\sigma_1, \ldots, \sigma_n$ are independent uniform $\{\pm 1\}$ -valued random variables. Then the Rademacher complexity of F is $R_n(F) = \mathbf{E}\hat{R}_n(F)$. Similarly, define the random variable

$$\hat{G}_n(F) = \mathbf{E} \left[\sup_{f \in F} \left| \frac{2}{n} \sum_{i=1}^n g_i f(X_i) \right| \middle| X_1, \dots, X_n \right] ,$$

where g_1, \ldots, g_n are independent Gaussian N(0,1) random variables. The Gaussian complexity of F is $G_n(F) = \mathbf{E}\hat{G}_n(F)$.

Lemma 4 There are absolute constants c and C such that for every class F and every integer n, $cR_n(F) \leq G_n(F) \leq C \ln nR_n(F)$.

Risk Bound

Theorem 5 Let P be a probability distribution on $\mathcal{X} \times \{\pm 1\}$, let F be a set of $\{\pm 1\}$ -valued functions defined on \mathcal{X} , and let $(X_i, Y_i)_{i=1}^n$ be training samples drawn according to P^n .

(b) With probability at least $1 - \delta$, every function f in F satisfies

$$P(Y \neq f(X)) \le \hat{P}_n(Y \neq f(X)) + \frac{R_n(F)}{2} + \sqrt{\frac{\ln(1/\delta)}{2n}}$$
.

Complexity Bound for NN

Theorem 18 Suppose that $\sigma : \mathbb{R} \to [-1,1]$ has Lipschitz constant L and satisfies $\sigma(0) = 0$. Define the class computed by a two-layer neural network with 1-norm weight constraints as

$$F = \left\{ x \mapsto \sum_{i} w_{i} \sigma (v_{i} \cdot x) : ||w||_{1} \leq 1, ||v_{i}||_{1} \leq B \right\}.$$

Then for x_1, \ldots, x_n in \mathbb{R}^k ,

$$\hat{G}_n(F) \le \frac{cLB(\ln k)^{1/2}}{n} \max_{j,j'} \sqrt{\sum_{i=1}^n (x_{ij} - x_{ij'})^2},$$

where $x_i = (x_{i1}, ..., x_{ik})$.

References

- (Barron 1994) A. R. Barron (1994). Approximation and estimation bounds for artificial neural networks. Machine Learning, Vol.14, pp.113-143.
- (Martin 1999) Martin A. and Bartlett P. Neural Network Learning: Theoretical Foundations 1st Edition
- (Wolpert 1996) WOLPERT, David H., 1996. The lack of a priori distinctions between learning algorithms. Neural Computation, 8(7), 1341–1390.
- (Wolpert 2001) WOLPERT, David H., 2001. The supervised learning no-free-lunch theorems. In: Proceedings of the 6th Online World Conference on Soft Computing in Industrial Applications.
- (Rahimi and Recht 2007) Rahimi A. and Recht B. Random Features for Large-Scale Kernel Machines. NIPS 2007.