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CS 535: Deep Learning



Machine Learning Theory: Basic setup

• Generic supervised learning setup:

• For 𝑥𝑖 , 𝑦𝑖 1…𝑛 i.i.d. drawn from the joint distribution 𝑃(𝑥, 𝑦), find a 
best function 𝑓 ∈ 𝐹 that minimizes the error 𝐸𝑥,𝑦[𝐿 𝑓 𝑥 , 𝑦 ]
• 𝐿 is a loss function, e.g. 

• Classification:

𝐿 𝑓 𝑥 , 𝑦 = ቊ
1, 𝑓 𝑥 ≠ 𝑦

0, 𝑓 𝑥 = 𝑦

• Regression: 𝐿 𝑓 𝑥 , 𝑦 = 𝑓 𝑥 − 𝑦 2

• 𝐹 is a function class (consists many functions, e.g. all linear functions, all 
quadratic functions, all smooth functions, etc.)



Machine Learning Theory: Generalization

• Machine learning theory is about generalizing to unseen examples
• Not the training set error!

• And those theory doesn’t always hold (holds with probability less than 1)

• A generic machine learning generalization bound:
• For 𝑥𝑖 , 𝑦𝑖 1…𝑛 drawn from the joint distribution 𝑃(𝑥, 𝑦),

with probability 1 − 𝛿

𝐸𝑥,𝑦 𝑓 𝑥 ≠ 𝑦 ≤
1

𝑛
෍

𝑖=1

𝑛

𝐿 𝑓 𝑥𝑖 , 𝑦𝑖 + Ω(𝐹, 𝛿)

Error on the 
training set

Flexibility of the 
function class

Error on the 
whole distribution

How to represent 
“flexibility”? That’s a 
course on ML theory



What is “flexibility”?

• Roughly, the more functions in 𝐹, the more flexible it is

• Function class: all linear functions 𝐹: {𝑓(𝑥)|𝑓 𝑥 = 𝑤⊤𝑥 + 𝑏}
• Not very flexible, cannot even solve XOR

• Small “flexibility” term, testing error not much more than training error

• Function class: all 9-th degree polynomials 
𝐹: {𝑓(𝑥)|𝑓 𝑥 = 𝑤1

⊤𝑥9 +⋯}
• Super flexible

• Big “flexibility” term, testing error can be much more than training



Flexibility and overfitting

• For a very flexible function class
• Training error is NOT a good measure of testing 

error

• Therefore, out-of-sample error estimates are 
needed
• Separate validation set to measure the error

• Cross-validation
• K-fold

• Leave-one-out

• Many times this will show to be worse than the
training error with a flexible function class



Another twist of the generalization inequality

• Nevertheless, you still want training error to be small

• So you don’t always want to use linear classifiers/regressors

𝐸𝑥,𝑦 𝑓 𝑥 ≠ 𝑦 ≤
1
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Add-on termIf this is 60% error…



How to deal with it when you do use a flexible 
function class
• Regularization

• To make the chance of choosing a highly flexible function to be low

• Example:
• Ridge Regression:

• Kernel SVM

min
𝑤

𝑤⊤𝑋 − 𝑌
2
+ 𝜆||𝑤||2

In order to choose a w with big ||𝑤||2

you need to overcome this term

min
𝑓

෍

𝑖

𝐿(𝑓 𝑥𝑖 , 𝑦𝑖) + 𝜆||𝑓||2

In order to choose a very unsmooth function
f you need to overcome this term



Bayesian Interpretation of Regularization

• Assume that a certain prior of the parameters exist, and optimize for 
the MAP estimate
• Example:

• Ridge Regression: Gaussian prior on w:P w = C exp(−𝜆 𝑤
2
)

• Kernel SVM: Gaussian process prior on f (too complicated to explain simply..)

min
𝑤

𝑤⊤𝑋 − 𝑌
2
+ 𝜆||𝑤||2

min
𝑓

෍

𝑖

𝐿(𝑓 𝑥𝑖 , 𝑦𝑖) + 𝜆||𝑓||2



Universal Approximators

• Universal Approximators
• (Barron 1994, Bartlett et al. 1999) Meaning that they can approximate (learn) 

any smooth function efficiently (meaning using a polynomial number of 
hidden units)

• Kernel SVM

• Neural Networks

• Boosted Decision Trees

• Machine learning cannot do much better
• No free lunch theorem



No Free Lunch

• (Wolpert 1996, Wolpert 2001) For any 2 learning algorithms, 
averaged over any training set d and over all possible distributions P, 
their average error is the same

• Practical machine learning only works because of certain correct 
assumptions about the data
• SVM succeeds by successfully representing the general smoothness

assumption as a convex optimization problem (with global optimum)

• However, if one goes for more complex assumptions, convexity is very hard to 
achieve!



High-dimensionality
Philosophical discussion about high-dimensional spaces



Distance-based Algorithms

• K-Nearest Neighbors: weighted average of k-nearest neighbors



Curse of Dimensionality

• Dimensionality brings
interesting effects:

• In a 10-dim space, to 
cover 10% of the data 
in a unit cube, one needs
a box to cover 80% of the
range



High Dimensionality Facts

• Every point is on the boundary
• With N uniformly distributed points in a p-dimensional ball, the closest point 

to the origin has a median distance of 

• Every vector is almost always orthogonal to each other
• Pick 2 unit vectors 𝑥1 and 𝑥2, then the probability that

is less than 1/𝑝

cos 𝑥1, 𝑥2 = |𝑥1
⊤𝑥2| ≥

log 𝑝

𝑝



Avoiding the Curse

• Regularization helps us with the curse
• Smoothness constraints also grow stronger with the dimensionality!

න|𝑓′ 𝑥 |𝑑𝑥 ≤ 𝐶

න
𝜕𝑓

𝜕𝑥1
𝑑𝑥1 +න

𝜕𝑓

𝜕𝑥2
𝑑𝑥2 +⋯+න

𝜕𝑓

𝜕𝑥𝑝
𝑑𝑥𝑝 ≤ 𝐶

• We do not suffer from the curse if we ONLY estimate sufficiently smooth 
functions!



Rademacher and Gaussian 
Complexity
Why would CNN make sense



Rademacher and Gaussian Complexity



Risk Bound



Complexity Bound for NN
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