6. Convolutional Neural Networks

CS 535 Deep Learning, Winter 2018
Fuxin Li

With materials from Zsolt Kira

Quiz coming up...

- Next Monday (2/5)
- 30 minutes
- Topics:
- Optimization
- Basic neural networks
- Neural Network Optimization
- No Convolutional nets in this quiz
- No "Theoretical Implications" part
- e.g. topics such as Assignment 1 question 1, initial quiz questions concerning high-dimensional space, etc. won't be covered in the quiz

The Image Classification Problem

(Multi-label in principle)

Neural Networks

- Extremely high dimensionality!
- 256×256 image has already 65,536 * 3 dimensions
- One hidden layer with 500 hidden units require 65,536 * 3 * 500 connections (98 Million parameters)

Challenges in Image Classification

Structure between neighboring pixels in

 natural imagesThe correlation prior for horizontal and vertical shifts (averaged over 1000 images) looks like this:

Takeaways:

1) Long-range correlation
2) Local correlation stronger than non-local

The convolution operator

Sobel filter

-1	0	+1				
-2	0	+2				
-1	0	+1				
$G X$			\quad	+1	+2	+1
:---:	:---:	:---:				
0	0	0				
-1	-2	-1				
$G y$						

I

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$					
:---	:---	:---						

2D Convolution with Padding

0	0	0	0	0					
0	1	3	1	0					
0	0	-1	1	0					
0	2	2	-1	0					
0	0	0	0	0					
$3 \times 1+(-1) \times 1=2$						$*$	-2	-2	1
:---:	:---:	:---:							
-2	0	1							
1	1	1							
2			$=$	2					
:---	:---	:---							

2D Convolution with Padding

0	0	0	0	0						
0	1	3	1	0						
0	0	-1	1	0						
0	2	2	-1	0						
0	0	0	0	0						
$1 \times(-2)+1 \times 1+1 \times(-1)+1 \times 1=-1$							$*$	-2	-2	1
:---:	:---:	:---:								
-2	0	1								
1	1	1								

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$	2	-1	-6		
:---:	:---:	:---:						

What if:

0	0	3	3	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$\quad=$	2	-1	-18		
:---	:---	:---						

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$	2	-1	-6		
:---	:---	:---						
4								

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$	2	-1	-6		
:---:	:---:	:---:						
4	-3							

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$	2	-1	-6		
:---:	:---:	:---:						
4	-3	-5						

2D Convolution with Padding

$$
\begin{aligned}
& \text { ReLU(x) } \\
& \operatorname{ReLU}(w * x+b) \\
& =\max (x, 0) \\
& \text { if } b=-2
\end{aligned}
$$

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$	2	-1	-6		
:---	:---	:---						
4	-3	-5						
1	-2							

2D Convolution with Padding

0	0	0	0	0				
0	1	3	1	0				
0	0	-1	1	0				
0	2	2	-1	0				
0	0	0	0	0	$*$	-2	-2	1
:---:	:---:	:---:						
-2	0	1						
1	1	1	$=$	2	-1	-6		
:---	:---	:---						
4	-3	-5						
1	-2	-2						

Grey: D: black
Filter size and Input/Output size

- Zero padding the input so that the output is NxN
(On the inonge - mean)

Location-invariance in images

- Image Classification
- It does not matter where the object appears
- Object Localization
- It does matter where the object appears
- (Deconvolution - to be dealt with later)
- But the rules for recognizing object are the same everywhere in the image

Convolutional Networks

- Each connection is a convolution followed by ReLU nonlinearity

For each pixel

- In a color image:

Pixel:

- Each filter output goes to 1 channel

CNN: Multilayer Architecture q
 $$
\left[\begin{array}{cccc} 1 & 0 & 600 & 0 \\ 0 & 10 & 0000 \\ 0 & 0 & 00000 \\ 0 & 0 & 10000 \end{array}\right]
$$

- Multi-layer architecture helps to generate more complicated templates

Convolutional Networks $2^{\text {nd }}$ layer

- Each connection is a convolution

What's the shape of weights and input

- e.g. 64 filters level 1

Input

- 128 filters level 2

Dramatic reduction on the number of parameters

- Think about a fully-connected network on 256×256 image with 500 hidden units and 10 classes
- Num. of params $=65536$ * 3 * $500+500$ * $10=98.3$ Million
- 1-hidden layer convolutional network on 256×256 image with 11×11 and 500 hidden units?
- Num. of params $=11 * 11 * 3 * 500+500 * 10=155,000$
- 2-hidden layers convolutional network on 256×256 image with $11 \times 11-3 \times 3$ sized filters and 500 hidden units in each layer?
- Num. of params $=150,000+3 * 3 * 500 * 500+500 * 10=2.4$ Million

Back to images

- Why images are much harder than digits?
- Much more deformation
- Much more noises
- Noisy background

Pooling $\begin{gathered}z_{1}, z_{2} \\ {\left[\begin{array}{l}z_{11} \\ z_{12} \\ z_{13}\end{array}\right]}\end{gathered}\left[\begin{array}{c}z_{21} \\ z_{22} \\ z_{2}\end{array}\right], ~ f\left(t z_{1}+(1-t) z_{2}\right)$

- Localized max-pooling (stride-2) helps achieving some location invariance

$$
\left[\begin{array}{l}
z_{1}+1 \\
t z_{2}+(-t) z_{22} \\
t=1
\end{array}\right]
$$

- As well as filtering out irrelevant background information $\left.\begin{array}{ll}1 \\ 1 & 4 \\ 1 & z_{23}\end{array}\right]$
e.g. $x_{\text {out }}=\max \left(x_{11}, x_{12}, x_{21}, x_{22}\right)$
- What is the subgradient of this?

$$
\begin{aligned}
& f\left(x, x_{2}, x_{3}\right) \\
& =\max \left(x_{1}, x_{2}, x_{3}\right)
\end{aligned}
$$

Deformation enabled by max-pooling

Deconvolutional Network

- Instead of mapping pixels to features, map the other way around
- Reverts the maxpooling process

Strides

- Reduce image size by strides
- Stride = 1, convolution on every pixel
- Stride = 2, convolution on every 2 pixels
- Stride $=0.5$, convolution on every half pixel (interpolation, Long et al. 2015)

The VGG Network

(Simonyan and Zisserman 2014)

Why $224 \times 224 ?$

- The magic number $224=2^{\wedge} 5 \times 7$, so that there is always a centersurround pattern in any layer
- Another potential candidate is $2^{\wedge} 7 \times 3=384$
- Some has shown larger is better
- However more layers + bigger = more difficult to train, need more machines to tune parameters

Backpropagation for the convolution operator

Forward pass:
Compute $f(X ; W)=X * W$

Backward pass:
Compute

$$
\begin{aligned}
& \frac{\partial Z}{\partial X}=? \\
& \frac{\partial Z}{\partial W}=?
\end{aligned}
$$

Historical Remarks：MNIST

$$
\begin{aligned}
& 00000000000000000000 \\
& 11111111111111111111 \\
& \text { 222ん2222222ス22222222 } \\
& 33333333333333333333 \\
& 44444444444444444444 \\
& 55555555555555555555 \\
& 66666666666666666666 \\
& 77777777777777777747 \\
& 88888888888888888888 \\
& 99999999999999999999
\end{aligned}
$$

Le Net

- Convolutional nets are invented by Yann LeCun et al. 1989
- On handwritten digits classification
- Many hidden layers
- Many maps of replicated units in each layer.
- Pooling of the outputs of nearby replicated units.
- A wide net that can cope with several characters at once even if they overlap.
- A clever way of training a complete system, not just a recognizer.
- This net was used for reading $\sim 10 \%$ of the checks in North America.
- Look the impressive demos of LENET at http://yann.lecun.com

The architecture of LeNet5 (LeCun 1998)

ConvNets performance on MNIST

Convolutional net LeNet-1subsampling to 16×16 pixels	$1.7 \underline{\text { LeCun et al. } 1998}$
Convolutional net LeNet-4 none	1.1 LeCun et al. 1998
Convolutional net LeNet-4 with K-NN instead of last layer	$1.1 \underline{\text { LeCun et al. } 1998}$
Convolutional net LeNet-4 with local learning instead of last layer Convolutional net LeNet-5, none [no distortions] Convolutional net, cross- entropy [elastic distortions]	$1.1 \underline{\text { LeCun et al. } 1998}$

9013391066

$\begin{array}{llllllllll}7 & 4 & 8 & 5 & 8 & 6 & 8 & 3 & 3 & 9\end{array}$

$\prod_{4 \rightarrow 9} \underset{2 \rightarrow 8}{2}$

The 82 errors made by LeNet5

The human error rate is probably about 0.2% 0.3% (quite clean)

The errors made by the Ciresan et. al. net

The top printed digit is the right answer. The bottom two printed digits are the network's best two guesses.

The right answer is almost always in the top 2 guesses.

With model averaging they can now get about 25 errors.

What's different from back then till now

- Computers are bigger, faster
- GPUs

	LeNet (1989)	LeNet (1998)	AlexNet (2012) objects
classification task	digits	digits	1,000
categories	10	10	$256 \times 256 \times 3$
image size	16×16	28×28	1.2 million
training examples	7,291	60,000	658,000
units	1,256	8,084	60 million
parameters	9,760	60,000	652 million
connections	65,000	344,000	200 quadrillion (est.)
total operations	11 billion	412 billion	

What else is different?

ReLU vs. Sigmoid

- ReLU rectifier
- Max-pooling
- Grab local features and make them global
- Dropout regularization (to-be-discussed)

- Replaceable by some other regularization techniques

