7. More Convolutional Neural Networks

CS 519 Deep Learning, Winter 2017

Fuxin Li

With materials from Zsolt Kira, Roger Grosse, Nitish Srivastava

Backpropagation for the convolution operator

Forward pass:

Compute f(X; W) = X * W

Backward pass:

 $\mathsf{Compute}_{\partial Z}$

$$\frac{\partial Z}{\partial X} = ?$$

$$\frac{\partial Z}{\partial W} = ?$$

Convolution as Matrix Multiplication

For each filter, **Z** is image with same size as **X** (assuming padding)

$$\mathbf{Z} = \mathbf{f}(\mathbf{X}; \mathbf{W}) = \mathbf{X} * \mathbf{W}$$

Gradient $\frac{\partial \mathbf{Z}}{\partial \mathbf{X}} = ?$

Toeplitz Matrix

w_{11}	w_{21}	w_{31}	•••	w_{12}	w_{22}	w_{32}	•••	w_{13}	
0	w_{11}	w ₂₁	•••	0	w_{12}	w_{22}	•••	0	
0	0	w_{11}	•••	0	0	w_{12}	•••	0	
	•••		•••	•••	•••		•••		•••
0	0	0	0	w_{11}	w_{21}	w ₃₁	•••	w_{12}	•••
0	0	0	0	0	w_{11}	w ₂₁	•••	0	•••
0	0	0	0	0	0	w_{11}	•••	0	
	•••		•••	•••	•••	•••	•••		•••

11	
<i>x</i> ₂₁	
<i>x</i> ₃₁	
:	
<i>x</i> ₁₂	
<i>x</i> ₂₂	
<i>x</i> ₃₂	
<i>x</i> ₁₃	

						1		
x_{11}	x_{12}	x_{13}	x_{21}	x_{22}	x_{23}	x_{31}	x_{32}	x_{33}
<i>x</i> ₁₂	<i>x</i> ₁₃	x ₁₄	x ₂₂	<i>x</i> ₂₃	x ₂₄	<i>x</i> ₃₂	<i>x</i> ₃₃	x ₃₄
<i>x</i> ₁₃	<i>x</i> ₁₄	<i>x</i> ₁₅	<i>x</i> ₂₃	<i>x</i> ₂₄	<i>x</i> ₂₅	<i>x</i> ₃₃	<i>x</i> ₃₄	<i>x</i> ₃₅
						•••	•••	•••

w_{11}
<i>w</i> ₁₂
<i>w</i> ₁₃
w_{21}
W_{22}
w_{23}
w ₃₁
W ₃₂
W ₃₃

Visualization of the filters (1st layer)

• 11x11 filters

Visualization of second-level filters

Visualization of third-level filters

Visualization of layer 5

Another visualization: Maximizing class score

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

- Start with zero image
- Keep weights fixed, perform backpropagation for a class!

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014

1. Find images that maximize some class score:

Convolution/ReLU/Pooling

Because of pooling, higher-layer filters can cover a larger region of the input than equal-sized filters in the lower layers.

Modern CNN trend toward:

- Small filter sizes (3x3 and less)
- Small pooling sizes (2x2 and less)
- Small strides (stride = 1, ideally)
- Deep
- Conv Layers should pad with zeros to not reduce spatial size
- Pool Layers should reduce size once in a while
- Eventually Fully-Connected Layers take over

arXiv!

- Because how fast the field evolves, most deep learning papers are on arXiv first
- http://arxiv.org/list/cs.CV/recent
- http://arxiv.org/list/cs.CL/recent

Check that for newest papers/ideas!

Understanding Deep Image Representations by Inverting Them [Mahendran and Vedaldi, 2014]

reconstructions from the 1000 log probabilities for ImageNet (ILSVRC) classes

Find an image such that:

- Its code is similar to a given code
- It "looks natural" (image prior regularization)

$$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^{H \times W \times C}}{\operatorname{argmin}} \ell(\Phi(\mathbf{x}), \Phi_0) + \lambda \mathcal{R}(\mathbf{x})$$
$$\ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2$$

Solve using SGD + Momentum

Reconstructions from the representation after last last pooling layer (immediately before the first Fully Connected layer)

Reconstructions from intermediate layers

Multiple reconstructions. Images in quadrants all "look" the same to the CNN (same code)

Deconvolutional Network

- Instead of mapping pixels to features, map the other way around
- Can be used to learned unsupervised features
- Here, attached to trained convnet

Visualization of second-level filters

Visualization of third-level filters

Visualization of layer 5

