7. More Convolutional Neural Networks CS 519 Deep Learning, Winter 2017 Fuxin Li With materials from Zsolt Kira, Roger Grosse, Nitish Srivastava ## Backpropagation for the convolution operator Forward pass: Compute f(X; W) = X * W Backward pass: $\mathsf{Compute}_{\partial Z}$ $$\frac{\partial Z}{\partial X} = ?$$ $$\frac{\partial Z}{\partial W} = ?$$ ## Convolution as Matrix Multiplication For each filter, **Z** is image with same size as **X** (assuming padding) $$\mathbf{Z} = \mathbf{f}(\mathbf{X}; \mathbf{W}) = \mathbf{X} * \mathbf{W}$$ Gradient $\frac{\partial \mathbf{Z}}{\partial \mathbf{X}} = ?$ #### Toeplitz Matrix | w_{11} | w_{21} | w_{31} | ••• | w_{12} | w_{22} | w_{32} | ••• | w_{13} | | |----------|----------|-----------------|-----|----------|----------|-----------------|-----|----------|-----| | 0 | w_{11} | w ₂₁ | ••• | 0 | w_{12} | w_{22} | ••• | 0 | | | 0 | 0 | w_{11} | ••• | 0 | 0 | w_{12} | ••• | 0 | | | | ••• | | ••• | ••• | ••• | | ••• | | ••• | | 0 | 0 | 0 | 0 | w_{11} | w_{21} | w ₃₁ | ••• | w_{12} | ••• | | 0 | 0 | 0 | 0 | 0 | w_{11} | w ₂₁ | ••• | 0 | ••• | | 0 | 0 | 0 | 0 | 0 | 0 | w_{11} | ••• | 0 | | | | ••• | | ••• | ••• | ••• | ••• | ••• | | ••• | | 11 | | |------------------------|--| | <i>x</i> ₂₁ | | | <i>x</i> ₃₁ | | | : | | | <i>x</i> ₁₂ | | | <i>x</i> ₂₂ | | | <i>x</i> ₃₂ | | | | | | <i>x</i> ₁₃ | | | | | | | | | 1 | | | |------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|------------------------| | x_{11} | x_{12} | x_{13} | x_{21} | x_{22} | x_{23} | x_{31} | x_{32} | x_{33} | | <i>x</i> ₁₂ | <i>x</i> ₁₃ | x ₁₄ | x ₂₂ | <i>x</i> ₂₃ | x ₂₄ | <i>x</i> ₃₂ | <i>x</i> ₃₃ | x ₃₄ | | <i>x</i> ₁₃ | <i>x</i> ₁₄ | <i>x</i> ₁₅ | <i>x</i> ₂₃ | <i>x</i> ₂₄ | <i>x</i> ₂₅ | <i>x</i> ₃₃ | <i>x</i> ₃₄ | <i>x</i> ₃₅ | | | | | | | | ••• | ••• | ••• | | w_{11} | |------------------------| | <i>w</i> ₁₂ | | <i>w</i> ₁₃ | | w_{21} | | W_{22} | | w_{23} | | w ₃₁ | | W ₃₂ | | W ₃₃ | | | ## Visualization of the filters (1st layer) • 11x11 filters ## Visualization of second-level filters #### Visualization of third-level filters ## Visualization of layer 5 ## Another visualization: Maximizing class score Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 #### 1. Find images that maximize some class score: - Start with zero image - Keep weights fixed, perform backpropagation for a class! Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 #### 1. Find images that maximize some class score: Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps Karen Simonyan, Andrea Vedaldi, Andrew Zisserman, 2014 #### 1. Find images that maximize some class score: ## Convolution/ReLU/Pooling Because of pooling, higher-layer filters can cover a larger region of the input than equal-sized filters in the lower layers. #### Modern CNN trend toward: - Small filter sizes (3x3 and less) - Small pooling sizes (2x2 and less) - Small strides (stride = 1, ideally) - Deep - Conv Layers should pad with zeros to not reduce spatial size - Pool Layers should reduce size once in a while - Eventually Fully-Connected Layers take over #### arXiv! - Because how fast the field evolves, most deep learning papers are on arXiv first - http://arxiv.org/list/cs.CV/recent - http://arxiv.org/list/cs.CL/recent Check that for newest papers/ideas! ## Understanding Deep Image Representations by Inverting Them [Mahendran and Vedaldi, 2014] reconstructions from the 1000 log probabilities for ImageNet (ILSVRC) classes #### Find an image such that: - Its code is similar to a given code - It "looks natural" (image prior regularization) $$\mathbf{x}^* = \underset{\mathbf{x} \in \mathbb{R}^{H \times W \times C}}{\operatorname{argmin}} \ell(\Phi(\mathbf{x}), \Phi_0) + \lambda \mathcal{R}(\mathbf{x})$$ $$\ell(\Phi(\mathbf{x}), \Phi_0) = \|\Phi(\mathbf{x}) - \Phi_0\|^2$$ Solve using SGD + Momentum Reconstructions from the representation after last last pooling layer (immediately before the first Fully Connected layer) #### Reconstructions from intermediate layers ## Multiple reconstructions. Images in quadrants all "look" the same to the CNN (same code) ### Deconvolutional Network - Instead of mapping pixels to features, map the other way around - Can be used to learned unsupervised features - Here, attached to trained convnet ## Visualization of second-level filters #### Visualization of third-level filters ## Visualization of layer 5