
9. Sequential Neural Models

CS 519 Deep Learning, Winter 2018
Fuxin Li

With materials from Andrej Karpathy, Bo Xie, Zsolt Kira

Sequential and Temporal Data
• Many applications exhibited by dynamically

changing states
– Language (e.g. sentences)
– Temporal data

• Speech
• Stock Market

Image Captioning

Machine Translation

• Have to look at the entire sentence (or, many
sentences)

Sequence Data

• Many data are sequences and have different
inputs/outputs

Image
classification

Image
captioning

Sentiment
Analysis

Machine
Translation

Video
Classification

(cf. Andrej Karpathy blog)

Previous: Autoregressive Models

• Autoregressive models
– Predict the next term in a sequence from a fixed

number of previous terms using “delay taps”.

• Neural Autoregressive models
– Use neural net to do so

input(t-2) input(t-1) input(t)

wt-2
wt-1

Previous: Hidden Markov Models
• Hidden states
• Outputs are generated from

hidden states
– Does not accept additional

inputs
– Discrete state-space

• Need to learn all discrete transition
probabilities!

output

output

output

time

Recurrent Neural Networks

• Similar to
– Linear Dynamic Systems

• E.g. Kalman filters

– Hidden Markov Models
– But not generative

• “Turing-complete”

(cf. Andrej Karpathy blog)

Vanilla RNN Flow Graph

U – input to hidden

V – hidden to output

W – hidden to hidden

h h h h

y y y y

Examples

Examples

Finite State Machines

• Each node denotes a state
• Reads input symbols one at a time
• After reading, transition to some other state

– e.g. DFA, NFA

• States = hidden
units

The parity Example

RNN Parity

• At each time step, compute parity
between input vs. previous parity bit

RNN Universality

• RNN can simulate any finite state machines
– is Turing complete with infinite hidden nodes

(Siegelmann and Sontag, 1995)

– e.g., a computer (Zaremba and Sutskever 2014)

Training data:

RNN Universality

• Testing programs

RNN Universality
(if only you can train it!)

RNN Text Model

Generate Text from RNN

RNN Sentence Model

• Hypothetical: Different hidden units for:
– Subject
– Verb
– Object (different type)

Realistic Ones

RNN Character Model

Realistic Wiki Hidden Unit

First row: Green for excited, blue for not excited
Next 5 rows: top-5 guesses for the next character

Realistic Wiki Hidden Unit

Above: Green for excited, blue for not excited
Below: top-5 guesses for the next character

Vanilla RNN Flow Graph

U – input to hidden

V – hidden to output

W – hidden to hidden

h h h h

y y y y

Training RNN

• “Backpropagation through time”
= Backpropagation

• What to do with
this if

?

E

Training RNN

• Again, assume
E

k timesteps?

• What’s the problem?

• There are terms like in the gradient

h

y

𝒕

𝒕

What’s wrong with ?

• Suppose is diagonlizable for simplicity

• What if,
– W has an eigenvalue of 4?
– W has an eigenvalue of 0.25?
– Both?

Cannot train it with backprop

(is very small if)

Do we need long-term gradients?

• Long-term dependency is one main reason we
want temporal models
– Example:

Die Koffer waren gepackt, und er reiste, nachdem er seine Mutter und
seine Schwestern geküsst und noch ein letztes Mal sein angebetetes
Gretchen an sich gedrückt hatte, das, in schlichten weißen Musselin
gekleidet und mit einer einzelnen Nachthyazinthe im üppigen
braunen Haar, kraftlos die Treppe herabgetaumelt war, immer noch
blass von dem Entsetzen und der Aufregung des vorangegangenen
Abends, aber voller Sehnsucht, ihren armen schmerzenden Kopf noch
einmal an die Brust des Mannes zu legen, den sie mehr als ihr eigenes
Leben liebte, ab.“

German for “travel”

Only now we are sure the travel started, not ended (reiste an)

LSTM: Long short-term Memory

• Need memory!
– Vanilla RNN has volatile memory (automatically

transformed every time-step)
– More “fixed” memory stores info longer so errors

don’t need to be propagated very far

• Complex architecture with memory

LSTM Starting point

• Instead of using volatile state transition

• Use fixed transition and learn the difference

– Now we can truncate the BPTT safely after several
timesteps

• However, this has the drawback of being stored
for too long
– Add a weight? (subject to vanishing as well)
– Add an “adaptive weight”

Forget Gate

• Decide how much of should we forget

• Forget neurons also trained

• How much we forget is dependent on:
– Previous output
– Current input
– Previous memory

Input Modulation

• Memory is supposed to be “persistent”
• Some input might be corrupt and should not

affect our memory
• We may want to decide which input affects

our memory
• Input Gate:

• Final memory update:

Output Modulation

• Do not always “tell” what we remembered

• Only output if we “feel like it”
• The output part can vary a lot depending on

applications

LSTM

• Hochreiter & Schmidhuber (1997)

• Use gates to remember things for a long period
of time

• Use gates to modulate input and output

LSTM Architecture

• “Official
version”
with a lot
of
peepholes

Cf. LSTM: a search space odyssey

Speech recognition
● Task:

o Google Now/Voice search / mobile dictation
o Streaming, real-time recognition in 50 languages

● Model:
o Deep Projection Long-Short Term Memory Recurrent

Neural networks
o Distributed training with asynchronous gradient descent

across hundreds of machines.
o Cross-entropy objective (truncated backpropagation

through time) followed by sequence discriminative
training (sMBR).

o 40-dimensional filterbank energy inputs
o Predict 14,000 acoustic state posteriors

Input

Outputs

Projection

LSTM

Projection

LSTM

Slide provided by Andrew Senior, Vincent Vanhoucke, Hasim Sak (June 2014)

LSTM Large vocabulary speech recognition

Models Parameters Cross-
Entropy

sMBR sequence
training

ReLU DNN 85M 11.3 10.4

Deep Projection LSTM RNN
(2 layer)

13M 10.7 9.7

● Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling H. Sak, A.
Senior, F. Beaufays to appear in Interspeech 2014

● Sequence Discriminative Distributed Training of Long Short-Term Memory Recurrent Neural Networks H. Sak, O.
Vinyals, G. Heigold A. Senior, E. McDermott, R. Monga, M. Mao to appear in Interspeech 2014

Voice search task; Training data: 3M utterances (1900 hrs); models trained on CPU
clusters

Slide provided by Andrew Senior, Vincent Vanhoucke, Hasim Sak (June 2014)

Bidirectional LSTM
Both forward and backward paths
Still DAG!

Pen trajectories

Network details

A. Graves, “Generating Sequences with Recurrent Neural Networks,
arXiv:1308.0850v5

Illustration of mixture density

Synthesis

• Adding text
input

Learning text windows

A demonstration of online handwriting recognition by an RNN
with Long Short Term Memory (from Alex Graves)

http://www.cs.toronto.edu/~graves/handwriting.html

LSTM Architecture Explorations

• “Official
version”
with a lot
of
peepholes

Cf. LSTM: a search space odyssey

A search space odyssey

• What if we remove some parts of this?

Cf. LSTM: a search space odyssey

Datasets
• TIMIT

– Speech data
– Framewise classification
– 3696 sequences, 304 frames per sequence

• IAM
– Handwriting stroke data
– Map handwriting strokes to characters
– 5535 sequences, 334 frames per sequence

• JSB
– Music Modeling
– Predict next note
– 229 sequences, 61 frames per sequence

Results

Cf. LSTM: a search space odyssey

Impact of Parameters

• Analysis method: fANOVA (Hutter et al. 2011,
2014)

• (Random) Decision forests trained on the
parameter space to partition the parameter
space and find the best parameter

• Given trained (random) decision forest, can go
to each leave node and count the impact of
missing one predictor

Impact of Parameters

Cf. LSTM: a search space odyssey

Impact of Parameters

Cf. LSTM: a search space odyssey

GRU: Gated Recurrence Unit

• Much simpler than LSTM
– No output gate
– Coupled input and forget gate

Cf. slideshare.net

Data

• Music Datasets:
– Nottingham, 1200 sequences
– MuseData, 881 sequences
– JSB, 382 sequences

• Ubisoft Data A
– Speech, 7230 sequences, length 500

• Ubisoft Data B
– Speech, 800 sequences, length 8000

Results

Nottingham
Music, 1200 sequences

Cf. Empirical Evaluation of Gated Recurrent Neural Network Modeling

MuseData
Music, 881 sequences

Results

Ubisoft Data B
Speech, 800 sequences, length 8000

Cf. Empirical Evaluation of Gated Recurrent Neural Network Modeling

Ubisoft Data A
Speech, 7230 sequences, length 500

CNN+RNN Example

RNN

LSTM

Pre-training

