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Sequential and Temporal Data
• Many applications exhibited by dynamically 

changing states
– Language (e.g. sentences)
– Temporal data

• Speech
• Stock Market



Image Captioning



Machine Translation

• Have to look at the entire sentence (or, many 
sentences)



Sequence Data

• Many data are sequences and have different 
inputs/outputs

Image
classification

Image
captioning

Sentiment
Analysis

Machine
Translation

Video
Classification

(cf. Andrej Karpathy blog)



Previous: Autoregressive Models

• Autoregressive models          
– Predict the next term in a  sequence from a fixed 

number of previous terms using “delay taps”.

• Neural Autoregressive models
– Use neural net to do so

input(t-2) input(t-1) input(t)

wt-2
wt-1



Previous: Hidden Markov Models
• Hidden states
• Outputs are generated from 

hidden states
– Does not accept additional 

inputs
– Discrete state-space

• Need to learn all discrete transition
probabilities!

output

output

output

time 



Recurrent Neural Networks

• Similar to
– Linear Dynamic Systems

• E.g. Kalman filters

– Hidden Markov Models
– But not generative

• “Turing-complete”

(cf. Andrej Karpathy blog)



Vanilla RNN Flow Graph

U – input to hidden

V – hidden to output

W – hidden to hidden

h h h h

y y y y



Examples



Examples



Finite State Machines

• Each node denotes a state
• Reads input symbols one at a time
• After reading, transition to some other state

– e.g. DFA, NFA

• States = hidden 
units



The parity Example



RNN Parity

• At each time step, compute parity 
between input vs. previous parity bit



RNN Universality

• RNN can simulate any finite state machines
– is Turing complete with infinite hidden nodes 

(Siegelmann and Sontag, 1995)

– e.g., a computer (Zaremba and Sutskever 2014)

Training data:



RNN Universality

• Testing programs



RNN Universality 
(if only you can train it!)



RNN Text Model



Generate Text from RNN



RNN Sentence Model

• Hypothetical: Different hidden units for:
– Subject
– Verb
– Object (different type)



Realistic Ones



RNN Character Model



Realistic Wiki Hidden Unit

First row: Green for excited, blue for not excited
Next 5 rows: top-5 guesses for the next character



Realistic Wiki Hidden Unit

Above: Green for excited, blue for not excited
Below: top-5 guesses for the next character



Vanilla RNN Flow Graph

U – input to hidden

V – hidden to output

W – hidden to hidden

h h h h

y y y y



Training RNN

• “Backpropagation through time”
= Backpropagation

• What to do with 
this if

?

E



Training RNN

• Again, assume
E



k timesteps?

• What’s the problem?

• There are terms like in the gradient

h

y

𝒕
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What’s wrong with ?

• Suppose is diagonlizable for simplicity

• What if,
– W has an eigenvalue of 4?
– W has an eigenvalue of 0.25?
– Both?



Cannot train it with backprop

( is very small if )



Do we need long-term gradients?

• Long-term dependency is one main reason we 
want temporal models
– Example: 

Die Koffer waren gepackt, und er reiste, nachdem er seine Mutter und 
seine Schwestern geküsst und noch ein letztes Mal sein angebetetes 
Gretchen an sich gedrückt hatte, das, in schlichten weißen Musselin 
gekleidet und mit einer einzelnen Nachthyazinthe im üppigen 
braunen Haar, kraftlos die Treppe herabgetaumelt war, immer noch 
blass von dem Entsetzen und der Aufregung des vorangegangenen 
Abends, aber voller Sehnsucht, ihren armen schmerzenden Kopf noch 
einmal an die Brust des Mannes zu legen, den sie mehr als ihr eigenes 
Leben liebte, ab.“

German for “travel”

Only now we are sure the travel started, not ended (reiste an)



LSTM: Long short-term Memory

• Need memory!
– Vanilla RNN has volatile memory (automatically 

transformed every time-step)
– More “fixed” memory stores info longer so errors 

don’t need to be propagated very far

• Complex architecture with memory



LSTM Starting point

• Instead of using volatile state transition

• Use fixed transition and learn the difference

– Now we can truncate the BPTT safely after several 
timesteps

• However, this has the drawback of being stored 
for too long
– Add a weight? (subject to vanishing as well)
– Add an “adaptive weight”



Forget Gate

• Decide how much of should we forget

• Forget neurons also trained

• How much we forget is dependent on:
– Previous output
– Current input
– Previous memory



Input Modulation

• Memory is supposed to be “persistent”
• Some input might be corrupt and should not 

affect our memory
• We may want to decide which input affects 

our memory
• Input Gate:

• Final memory update:



Output Modulation

• Do not always “tell” what we remembered

• Only output if we “feel like it”
• The output part can vary a lot depending on 

applications



LSTM

• Hochreiter & Schmidhuber (1997) 

• Use gates to remember things for a long period 
of time

• Use gates to modulate input and output



LSTM Architecture

• “Official 
version” 
with a lot 
of 
peepholes

Cf. LSTM: a search space odyssey



Speech recognition
● Task:

o Google Now/Voice search / mobile dictation 
o Streaming, real-time recognition in 50 languages

● Model:
o Deep Projection Long-Short Term Memory Recurrent 

Neural networks
o Distributed training with asynchronous gradient descent 

across hundreds of machines.
o Cross-entropy objective (truncated backpropagation 

through time) followed by sequence discriminative 
training (sMBR).

o 40-dimensional filterbank energy inputs 
o Predict 14,000 acoustic state posteriors

Input

Outputs

Projection

LSTM

Projection

LSTM

Slide provided by Andrew Senior, Vincent Vanhoucke, Hasim Sak (June 2014)



LSTM Large vocabulary speech recognition

Models Parameters Cross-
Entropy

sMBR sequence 
training

ReLU DNN 85M 11.3 10.4

Deep Projection LSTM RNN 
(2 layer)

13M 10.7 9.7

● Long Short-Term Memory Recurrent Neural Network Architectures for Large Scale Acoustic Modeling H. Sak, A. 
Senior, F. Beaufays to appear in Interspeech 2014

● Sequence Discriminative Distributed Training of Long Short-Term Memory Recurrent Neural Networks H. Sak, O. 
Vinyals, G. Heigold A. Senior, E. McDermott, R. Monga, M. Mao to appear in Interspeech 2014

Voice search task; Training data: 3M utterances (1900 hrs); models trained on CPU 
clusters

Slide provided by Andrew Senior, Vincent Vanhoucke, Hasim Sak (June 2014)



Bidirectional LSTM
Both forward and backward paths
Still DAG!



Pen trajectories





Network details

A. Graves, “Generating Sequences with Recurrent Neural Networks, 
arXiv:1308.0850v5



Illustration of mixture density



Synthesis

• Adding text
input



Learning text windows



A demonstration of online handwriting recognition by an RNN 
with Long Short Term Memory (from Alex Graves)

http://www.cs.toronto.edu/~graves/handwriting.html



LSTM Architecture Explorations

• “Official 
version” 
with a lot 
of 
peepholes

Cf. LSTM: a search space odyssey



A search space odyssey

• What if we remove some parts of this?

Cf. LSTM: a search space odyssey



Datasets
• TIMIT

– Speech data
– Framewise classification
– 3696 sequences, 304 frames per sequence

• IAM
– Handwriting stroke data
– Map handwriting strokes to characters
– 5535 sequences, 334 frames per sequence

• JSB
– Music Modeling
– Predict next note
– 229 sequences, 61 frames per sequence



Results

Cf. LSTM: a search space odyssey



Impact of Parameters

• Analysis method: fANOVA (Hutter et al. 2011, 
2014)

• (Random) Decision forests trained on the 
parameter space to partition the parameter 
space and find the best parameter

• Given trained (random) decision forest, can go 
to each leave node and count the impact of 
missing one predictor



Impact of Parameters

Cf. LSTM: a search space odyssey



Impact of Parameters

Cf. LSTM: a search space odyssey



GRU: Gated Recurrence Unit

• Much simpler than LSTM
– No output gate
– Coupled input and forget gate

Cf. slideshare.net



Data

• Music Datasets:
– Nottingham, 1200 sequences
– MuseData, 881 sequences
– JSB, 382 sequences

• Ubisoft Data A
– Speech, 7230 sequences, length 500

• Ubisoft Data B
– Speech, 800 sequences, length 8000



Results

Nottingham
Music, 1200 sequences

Cf. Empirical Evaluation of Gated Recurrent Neural Network Modeling

MuseData
Music, 881 sequences



Results

Ubisoft Data B
Speech, 800 sequences, length 8000

Cf. Empirical Evaluation of Gated Recurrent Neural Network Modeling

Ubisoft Data A
Speech, 7230 sequences, length 500



CNN+RNN Example
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LSTM







Pre-training




















