1. The continuous-time signal
 \(x_c(t) = \sin (20\pi t) + \cos (40\pi t) \)

 is sampled with a sampling period \(T \) to obtain the discrete-time signal
 \(x[n] = \sin \left(\frac{n\pi}{5} \right) + \cos \left(\frac{2\pi n}{5} \right) \)

 (a) Determine a choice for \(T \) consistent with this information.
 (b) Is your choice for \(T \) in part (a) unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.

2. The continuous-time signal
 \(x_c(t) = \frac{\sin (10\pi t)}{10\pi t} \)

 is sampled with a sampling period \(T \) to obtain the discrete-time signal
 \(x[n] = \frac{\sin \left(\frac{n\pi}{2} \right)}{\left(\frac{n\pi}{2} \right)} \)

 (a) Determine a choice for \(T \) consistent with this information.
 (b) Is your choice for \(T \) in part (a) unique? If so, explain why. If not, specify another choice of \(T \) consistent with the information given.

3. Use the system shown in Fig. 1. below to implement a differentiator:

 \(y_c(t) = \frac{d}{dt} x_c(t) \)

 (C/D: An ideal continuous-to-discrete time converter, D/C: An ideal discrete-to-continuous time converter)

 \(H_c(j\Omega) \)

 \[\begin{array}{c}
 x_c(t) \text{ (input)} \\
 C/D \text{ (converter)} \\
 x_d[n] \text{ (sampled)} \\
 H_c(e^{j\omega T}) \text{ (filter)} \\
 y_d[n] \text{ (output)} \\
 D/C \text{ (converter)} \\
 y_c(t) \text{ (reconstructed)} \\
 \end{array} \]

 Fig. 1. For Problem 3

 a. Write \(H_c(j\Omega) \) for the derivative
 b. Find \(H_c(e^{j\omega T}) \)
 c. Find and plot \(h[n] \)
4. Each of the following parts lists an input signal $x[n]$ and the Up-sampling and Down-sampling rates L and M for the system in Fig. 2. Determine the corresponding output $\tilde{x}_d[n]$

(a) $x[n] = \sin(2\pi n/3)/\pi n$, $L = 4$, $M = 3$
(b) $x[n] = \sin(3\pi n/4)$, $L = 6$, $M = 7$

5. For the system shown in Fig. 2, $X(e^{j\omega})$, the Fourier transform of the input signal $x[n]$, is shown in Fig. 3.

For each of the following choices of L and M, specify the maximum possible value of ω_0 such that $\tilde{X}_d(e^{j\omega}) = aX(e^{jM\omega/L})$ for some constant a.

(a) $M = 3$, $L = 2$
(b) $M = 2$, $L = 3$

6. Fig. 4 shows a continuous-time filter that is implemented using an LTI discrete-time filter ideal lowpass filter with frequency response over $-\pi \leq \omega \leq \pi$ as
(a) If the continuous-time Fourier transform of $x_c(t)$, namely $X_c(j\Omega)$, is as shown in Fig. 5. and $\omega_c = \pi/5$, sketch and label $X(e^{j\omega})$, $Y(e^{j\omega})$, and $Y_c(j\Omega)$ for $1/T = 2 \times 10^4$

(b) For $1/T = 6 \times 10^3$ and for input signals $x_c(t)$ whose spectra are bandlimited to $|\Omega| < 2\pi \times 5 \times 10^3$ (but otherwise unconstrained), what is the maximum choice of the cutoff frequency ω_c of the filter $H(e^{j\omega})$ for which no aliasing occurs. For this maximum choice of ω_c, specify $H_c(j\Omega)$.

Fig. 4. Continuous-Time filter using a discrete-time LPF

Fig. 5. Continuous-Time Fourier Transform of $x_c(t)$