
CS 161/162

C/C++ Programming Style Guideline

Comments
The comments should describe what is happening, what parameters and variables mean, any
restrictions or bugs, etc. Avoid comments that are clear from the code. Don’t write comments
that disagree with the code. Short comments should be what comments, such as "compute mean
value", rather than how comments such as "sum of values divided by n". C/C++ is not assembly;
putting a comment at the top of a 3-10 line section telling what it does overall is often more
useful than a comment on each line describing micrologic.

Programs should include a program header at the very top of the file, and EVERY function
should be preceded by headers blocks, which describe the purpose, usage, and type of any
parameters, as well as any pre-conditions and post-conditions. For those unclear on these
concepts, a pre-condition is a condition that must hold prior to beginning the function, and post-
conditions are conditions that must hold upon exiting the function. As code is updated, these may
change, and must be updated accordingly.

/***
 ** Program Filename:
 ** Author:
 ** Date:
 ** Description:
 ** Input:
 ** Output:
 ***/

/***
 ** Function:
 ** Description:
 ** Parameters:
 ** Pre-Conditions:
 ** Post-Conditions:
 ***/

Comments that describe algorithms, data structures, etc. should be in block comment form.

/*
 * Here is a block comment.
 * The comment text should be tabbed or spaced over uniformly.
 * The opening slash-star and closing star-slash are alone on a line.
 */

/*
** Alternate format for block comments
*/

Block comments inside a function are appropriate, and they should be spaced over to the same
indentation setting as the code that they describe. One-line comments alone on a line should be
indented to the same space setting of the code that follows.

int main() {

 float radius;

 /* Read radius value from user. */
 printf(“Enter the circle’s radius value: ”);
 scanf(“%f”, &radius);

 return 0;
}

Very short comments may appear on the same line as the code they describe, and should be
spaced over to separate them from the statements.

if (a == EXCEPTION) {
 b = TRUE; /* special case */
}
else {
 b = isprime(a); /* works only for odd a */
}

Whitespace
Use vertical and horizontal whitespace generously. Indentation and spacing should reflect the
block structure of the code; e.g., there should be at least 2 blank lines between the end of one
function and the comments for the next. For indentation, you can use tabs or spaces, but BE
CONSISTENT. If you choose to use spaces, then I suggest you use at least 3 spaces for
indenting because it is hard to see 1 or 2 spaces.

It is a good idea to have spaces after commas in argument/variable lists and after semicolons in
for loops to help separate the arguments/variables and statements visually.

int length, width;

int calculate_rectangle_area(int length, int width) {

for(i = 0; i < MAX_SIZE; i++) {

Operators should be surrounded by a space. For example, use

z = x + y

rather than

z=x+y

This greatly enhances readability, and makes it significantly easier to spot operators within an
expression. Prefix and postfix increment and decrement are not considered operators in this
context.

Variable Declarations
Related declarations of the same type can be on the same line, but you should put unrelated
declarations of the same type on separate lines. A comment describing the role of the object
being declared should be included, with the exception that a list of #defined constants does not
need comments if the constant names are sufficient documentation. The names, values, and
comments are usually indented so that they line up underneath each other. Use spaces rather than
tabs for alignment.

The "pointer" qualifier, '*', should be with the variable name rather than with the type.

char *s, *t, *u;
instead of
char* s, t, u;

which is wrong, since 't' and 'u' do not get declared as pointers.

Compound Statements
A compound statement is a list of statements enclosed by braces. There are many common ways
of formatting the braces. Be consistent with your local standard, if you have one, or pick one and
use it consistently. When editing someone else's code, always use the style used in that code.

control {
 statement;
 statement;
}

When a block of code has several labels (unless there are a lot of them), the labels are placed on
separate lines. The fall-through feature of the C/C++ switch statement, (that is, when there is no
break between a code segment and the next case statement) must be commented for future
maintenance.

switch (expr) {
 case ABC:
 case DEF:
 statement;
 break;
 case UVW:
 statement; /*FALLTHROUGH*/
 case XYZ:
 statement; break;
}

Here, the last break is unnecessary, but is required because it prevents a fall-through error if
another case is added later after the last one. The default case, if used, should be last and does not
require a break if it is last.

Naming Conventions
Individual projects will no doubt have their own naming conventions. There are some general
rules however.

• Names with leading and trailing underscores are reserved for system purposes and should
not be used for any user-created names. Function, typedef, and variable names, as well as
struct, union, (C++) class, and enum tag names should be in lower case, with words
separated by an underscore.

• Avoid names that differ only in case, like foo and FOO. Similarly, avoid foobar and
foo_bar. The potential for confusion is considerable. Similarly, avoid names that look
like each other. On many terminals and printers, 'l', '1' and 'I' look quite similar. A
variable named 'l' is particularly bad because it looks so much like the constant '1'.

• #define constants should be in all CAPS.
• Enum constants are in all CAPS.

Constants
Numerical constants should not be coded directly. The #define feature of the C/C++
preprocessor should be used to give constants meaningful names. Symbolic constants make the
code easier to read. Defining the value in one place also makes it easier to administer large
programs since the constant value can be changed uniformly by changing only the define. The
enumeration data type is a better way to declare variables that take on only a discrete set of
values, since additional type checking is often available. Some specific constraints:

• Constants should be defined consistently with their use; e.g. use 540.0 for a float instead
of 540 with an implicit float cast.

• There are some cases where the constants 0 and 1 may appear as themselves instead of as
defines. For example if a for loop indexes through an array, then

for (i = 0; i < ARYBOUND; i++)

is reasonable.

• Always compare pointers to NULL, rather than 0.
• Even simple boolean values like 1 or 0 are often better expressed using defines like

TRUE and FALSE (sometimes YES and NO read better).

Line Length
Lines should be no longer than 90 characters. Any lines longer than this will wrap on many
terminals, and lower readability.

A long string of conditional operators should be split onto separate lines. When separating a
statement or conditional operators, make sure the separation is logical and readable, i.e. look at
the example below.

if (foo->next == NULL && totalcount < needed
&& needed <= MAX_ALLOT &&
server_active(current_input)) {
 ...
}

might be better as

if (foo->next == NULL
 && totalcount < needed
 && needed <= MAX_ALLOT
 && server_active(current_input)
){
 ...
}

	CS 161/162
	C/C++ Programming Style Guideline
	Comments
	Whitespace
	Variable Declarations
	Compound Statements
	Naming Conventions
	Constants
	Line Length

