
Assignment 5 Code Peer Reviews Due: Thursday, 3/07/19, 11:59pm

Assignment 5 Back Evaluations: Sunday, 3/10/19, 11:59pm

Go to Peerceptiv and complete your 3 peer reviews by Thursday at midnight. After Thursday at
midnight, you will evaluate how helpful your peer reviews are by Sunday at midnight.

Assignment #6: 1-D and 2-D Arrays (150 pts)

Design Due: Sunday, 3/10/19, 11:59pm

Design Peer Reviews Due: Thursday, 3/14/19, 11:59pm

Code and Design Back Evaluations: Sunday, 3/17/19, 11:59pm

Make sure you demo Assignment #5 within two weeks of the due date to receive full credit. If
you go outside the two-week limit without permission, you will lose 50 points. If you fail to
show up for your demo without informing anyone, then you will automatically lose 10 points.

(10 pts) Assignment 5 Reflective Post-Peer Review Survey:
http://oregonstate.qualtrics.com/jfe/form/SV_0cujBJYqkCe8SJD

Problem Statement

You will apply your knowledge of arrays to gain an understanding of a heat transfer model over one-
and two-dimensional objects. To do this, you will implement the explicit method for solving finite
difference approximations. Your program will simulate the diffusion of heat through a 1-D or 2-D object,
such as a wire or plate, using the explicit method to solve for new time instances. Since diffusion is the
rate of change, then derivatives are needed to calculate this rate of change in heat over time.

This following equation is how you calculate the diffusion of heat in a 1-D object over time:

To solve this, it would require techniques from calculus, but we can’t do calculus/take a derivative on the
computer like we would do by hand. Instead, we need to approximate the derivative, and one
approximation method is the explicit method for finite difference approximations to solve this equation.

Where the inputs are as follows:

k Thermal conductivity

ρ (rho) Material density

c Specific heat capacity of material

u 1-D object

x Location on u

t Time

Note, the symbol Δ represents the change in a variable. For example, Δx is the change in x, and Δt is
the change in time. The change in x, Δx, is calculated by knowing the length of the 1-D object and
how many sections you want to calculate the diffusion of the heat for. For example, a wire that is 5
inches divided into 5 sections have 1-inch sections, i.e. Δx is 1. Similarly, the change in time, Δt, is
calculated by knowing how long to run the simulation and for how many time instances to calculate the
diffusion. For example, we want to simulate the heat diffusion for 10 minutes at 5 time instances is Δt of
2 minutes. Below shows a picture of the first two time instances for a 1-D object broken into 5 sections.

Now, we want to solve for:

Lastly, we want to make sure that our simulation is stable. Use this equation:

Any value below 0.5 is stable, otherwise it is unstable.

Start by using the material properties of Nickel:

k 52.4

ρ (rho) 0.321

c 0.12

Wire length 10

Sections 10

Time intervals 50

Time of Simulation 0.01675

Right temp x[n] 100

Left temp x[0] 0

Initial temp (t0) 0

Example Output:

Next, you can implement the two-dimensional model:

Here, each point in your material is influenced by the points above and beside it.

Lastly, we want to make sure that our simulation is stable. Use this equation:

∆� ≤
∆� ∗ ∆� ∗ �ℎ	 ∗

4 ∗ �

Use the properties of nickel again:

k 52.4

ρ (rho) 0.321

c 0.12

Plate height and width 10

Sections across height/width 10

Time intervals 50

Time of simulation 0.001675
Left/Right column temp 100

Bottom/Top row temp 100

Initial temp 0

Example Output:

You can look up other metals and their properties to run more simulations.
https://www.engineersedge.com/properties_of_metals.htm

Design Document – Due Sunday 3/10/19, 11:59pm

Refer to the Example Polya Document - Polya_template.pdf

Step 1: Understanding the Problem/Problem Analysis. (15 pts)
Do you understand everything in the problem? List anything you do not fully understand, and make
sure to ask a TA or instructor about anything you do not understand.

• What are the user inputs/requirements, program outputs, etc.? (5 pts)

• What assumptions are you are making? (5 pts)

• What are all the tasks and subtasks in this problem? (5 pts)

Step 2: Program Design. (25 pts)
• What does the overall big picture of this program look like? (flowchart or pseudocode) (15 pts)

o What data do you need to create, when do you read input from the user, what is the dealer
strategy going to be?

o What are the decisions that need to be made in this program?
o What tasks are repeated?

• What kind of bad input are you going to handle? (5 pts)

• Provide a drawing/diagram of what the initial plate and wire will look like (5 pts).

Based on your answers above, list the specific steps or provide a flowchart of what is needed
to create this program.

Step 4: Program Testing. (10 pts)

Create a test plan with the test cases (bad, good, and edge cases). What do you hope to be the

expected results?

o What are the good, bad, and edge cases for ALL input in the program? Make sure to provide

enough of each and for all different inputs you get from the user.

Program Code – Due Sunday 3/17/19, 11:59pm

(90 pts) Write the program to simulate heat diffusion.

Program Input/Output

• Prompt the user to simulate heat diffusion of over a plate or wire.

• Allow the user to modify rho, k, and c.

• Ask the user for the wire/plate length and segments/create 1-d or 2-d dynamic array of correct
dimensions

• Ask the user for the time length and intervals

• Ask the user for the initial temp, and right and left (in addition to top and bottom if plate) constant
temperature

• Check if the parameters are stable, if it is not stable, you must alert the user.

• Print the calculated data at each time interval to the screen

• Handle all bad input from the user, even data of the wrong type

• Re-prompt the user to see if they want to go again.

• Make sure you follow the style guidelines, have a program and function headers with appropriate
comments, and be consistent.

• Automatic Deductions: function over 15 lines, use of globals, use of gotos, and memory leaks.

(10 pts) Extra Credit

Allow the user to enter command-line arguments for wire or plate, rho, k, and c using the following
options to designate the information, a.out -u wire -r 0.321 -k 52.4 -c .12. These option value pairs
should come in any order, and you should handle any errors with these.

Visualizing the data

Type the following commands in the directory where your code is.

 $ curl -S http://classes.engr.oregonstate.edu/eecs/winter2019/cs161-
001/heat_diffusion/setup.sh > setup.sh
 $ chmod a+x setup.sh
 $./setup.sh
 $ export GADDIR=/nfs/stak/faculty/p/parhammj/grads-2.0.1/lib

OR
 $ setenv GADDIR /nfs/stak/faculty/p/parhammj/grads-2.0.1/lib

Note: You will need to run the final export or setenv command every time you start a new session.

After running these commands, you should see the following files in the directory:
 grads
 heatdiff.ctl
 heatdiff2.ctl
 1d_grads_script.gs
 2d_grads_script.gs
 helper.hpp

There is one final step before you can visualize your simulation. GrADS requires binary data from a file.
To store your data in a file, you will use the helper.hpp file.

In your program, add the following line at the top of your program with the other libraries:

 #include “helper.hpp”

Add this line of code to the beginning of the function where you are writing your 1-d and 2-d arrays to the
screen:
 fileWriter fw(“heat.dat”);

Finally, add this line of text where you are printing your 1-D data to the screen.

 fw << data[i];

Once you run your program, you should see a file named heat.dat in your local directory.

Now you are ready to use GrADS to visualize your data. To do so, follow these commands.

 $ grads -l
 ga-> open heatdiff.ctl
 ga-> run 1d_grads_script.gs

You should see something like this:

To exit GrADS use:
 ga-> quit

Use the same method to output to the binary file, instead use heat2.dat.
 fileWriter fw(“heat2.dat”);
 ...
 fw << data[i][j];

Now we can visualize our data with GrADS for the two-dimensional simulations.
 $ grads -l
 ga-> open heatdiff2.ctl
 ga-> run 2d_grads_script.gs

You should see something like this.

Electronically submit your Design Document by the design due date and your C++ program (.cpp file,
not your executable!!!) by the code due date using Peerceptiv.

