CS 161
Intro to CS I

What is CS all about?
Odds and Ends

• Go to Lab this week (laptop required)
• Assignment 1 posted and can upload to Peerceptiv
• Math study: Elise.Lockwood@oregonstate.edu

• Questions?
How to Be Successful

• Read and listen carefully
• Start assignments early
• Be proactive with absences and issues that arise in the term
• Get help when you need it
Help Hierarchy

• Reread assignment, lecture slides, labs, syllabus
• Google/Bing/Open a textbook
• Ask a friend
• Ask a TA
• Ask Jennifer

• All Emails Should Include:
 • What your problem is
 • What you have tried
 • What would help you most
 • Section number (if relating to a grade issue)
Computers Are Everywhere

• Examples:
 – homes, offices, rooms/servers, phones, pacemakers, cars, etc.

• What is the difference b/w these?
 – Complexity
 – Size
What is a computer?

• A Computational Device
 – It computes (input -> processing -> output)
 – Modern: device that can be programmed to carry out an algorithm.

• What is Computer Science?
What is an algorithm?

• Step-by-step description of how to accomplish a task, i.e. recipe
• Algorithmic thinking
• Expressed in any language
 – Natural
 – Programming
What is programming?

• Problem Statement
• Solve the Problem
• Specify Algorithm
• Algorithm -> Computer Language

• Why do we teach programming 1st?
Hardware vs. Software

• Computer: **machine** that manipulates data and carries out **set of instructions**

• Hardware
 – CPU
 – RAM
 – Hard Disk

• Software
 – Programs
Software/Programs

• Primary piece of software on computer?
• What is its purpose?
• What are applications?
Digital Realm

- Based on discrete #s
 - Specifically: Circuits
- Binary, i.e. base 2
 - 0 or 1
More Binary

- What is each digit called?
- What is a Byte?
- How many numbers can be expressed in a Byte?
What does this mean for us?

• Unsigned
 – What is the smallest number?
 – What is the largest number?

• Signed
 – What is the largest number?
 – What is the smallest number?
Programming

• Writing **code** that a computer can **execute**
 – Does that mean we have to write in binary?

• High-level language
 – Translated Continuously during runtime
 • Interpreted
 • Just in time compilation/caching
 – **Translated Prior/Ahead of time to runtime**
 • High-level -> machine language
 • High-level -> intermediate language
C++ Programming Environment

• Create a program: `vim hello.cpp`
• Compile program: `g++ hello.cpp -o hello`
• Run program: `.\hello`
• Example: `hello.cpp`

```cpp
#include <iostream>
int main() {
    std::cout << "Hello CS 161 Class!!!";
    return 0;
}
```
Our first C++ program!

```cpp
#include <iostream>
int main() {
    std::cout << "Hello CS 161 Class!!!";
    return 0;
}
```

- **Libraries**
 - Example: `#include <iostream>`
- **Functions**
 - Perform particular action/computation

 - Requires special function: **main**

 - `int main() { }`
- **Statements**
 - Ended by semicolon
Comments

• Ignored by compiler
• Comment a block of code: /*.....*/
• Comment one line of code: //
• Why use these?
What are you required to have now?

• Header at beginning of program and other appropriate comments

/*****************************/
** Program: hello.cpp
** Author: Jennifer Parham-Mocello
** Description: This program prints hello world to the console
** Input: none
** Output: hello world text
/*****************************/

• Appropriate use of line comments
• Programming Style: please read your class style guide
 – Program Header/Description
 – Placement of {}
 – Indentation: spaces vs. tabs

• String Literal in quotations, “”
 – Not single quotes!
 • INCORRECT: std::cout << ‘Hello World’;
 – Do not span more than one line!
 • INCORRECT: std::cout << “Hello World”;
• Escape Sequences
 – Display special characters
 – Use backslash, \, before special character to print
• Examples:
 std::cout << "\"Hello World\"\n";
• Refer online for common escape sequences: http://en.cppreference.com/w/cpp/language/escape