
Lab 8

In order to get credit for the lab, you need to be checked off by the end of lab. You can
earn a maximum of 3 points for lab work completed outside of lab time, but you must
finish the lab before the next lab. For extenuating circumstances, contact your lab TAs
and Jennifer Parham-Mocello.

(2 pts) Worksheet

In small groups, answer the following questions from your conceptual point of view, and as a
class with your TA, justify these concepts using code.

1. Compare and contrast the stack and the heap.
a. What they do?
b. Where do they live?
c. Can they both be deleted?

2. What is dynamic memory?

3. What is a memory leak, and how do you prevent them?

a. How to check if you have a memory leak?

4. How does this apply to what you have learned about 1-d arrays?

5. What is the difference in a C++ and C-style string?

6. How does the declaration for a function differ between these two types of strings? What

extra piece of information do you need for integer arrays vs. strings? How does the

declaration for a C++ and C-style string change if you want to modify the contents of the

string in the function?

7. How do you make an array of C++ strings? How would you make an array of C-style

strings?

(2 pts) Debugging using a debugger

The purpose of a debugger such as GDB is to allow you to see what is going on "inside"
another program while it executes -- or what another program was doing at the moment it
crashed.

GDB can do four main kinds of things (plus other things in support of these) to help you catch
bugs in the act:

• Start your program, specifying anything that might affect its behavior.
• Make your program stop on specified conditions.
• Examine what has happened, when your program has stopped.
• Change things in your program, so you can experiment with correcting the effects of

one bug and go on to learn about another.

GDB Manpage is a good source of information, i.e. man gdb.

The first thing you need to do to start debugging your program is to compile it with debugging
symbols, this is accomplished with the -g flag:

g++ filename.cpp -g -o filename

Lets start with a simple program that gets a line of text from the user, and prints it out
backwards to the screen:

#include <iostream>
#include <string.h>

using namespace std;

int main(){
 char input[50];
 int i = 0;

 cin >> input;

 for(i = strlen(input); i >= 0; i--){
 cout << input[i];
 }
 cout << endl;

 return 0;
}

compile and start the debugger with:
g++ debug.cpp -g -o debug
gdb ./debug (start another session which will run gdb)

Here is a mini tutorial for the 8 main commands that you will mostly be using in your debugging
session

1. break

2. run

3. print

4. next & step

5. continue

6. display & watch

7. where (or bt)

1. The break Command:

gdb will remember the line numbers of your source file. This will let us easily set up break points in the

program. A break point, is a line in the code where you want execution to pause. Once you pause

execution you will be able to examine variables, and walk through the program, and other things of that

nature.

Continuing with our example lets set up a break point at line 6, just before we declare int i = 0;

(gdb) break 9
Breakpoint 1 at 0x400923: file debug.cpp, line 9.
(gdb)

2. The run Command:

run will begin initial execution of your program. This will run your program as you normally would

outside of the debugger, until it reaches a break point line. This means if you need to pass any command

line arguments, you list them after run just as they would be listed after the program name on the

command line.

At this moment, you will have been returned to the gdb command prompt. (Using run again after your

program has been started, will ask to terminate the current execution and start over)

From our example:

Starting program: /nfs/farm/classes/eecs/fall2013/e ecs161-
001/private/a.out

Breakpoint 1, main (argc=1, argv=0x7fffffffd008)
 at debug.cpp:9
9 int i = 0;

3. The print Command:

print will let you see the values of data in your program. It takes an argument of the variable name.

In our example, we are paused right before we declare and initialize i. Let’s look what the value of i is

now:

(gdb) print i
$1 = -1075457232
(gdb)

i contains garbage, we haven’t put anything into it yet.

4. The next and step Commands:

next and step do basically the same thing, step line by line through the program. The difference is that

next steps over a function call, and step will step into it.

Now in our example, we will step to the beginning of the next instruction

(gdb) step
11 cin >> input;
(gdb)

before we execute the cin, let’s check the value of i again:

(gdb) print i
$2 = 0
(gdb)

i is now equal to 0, like it should be.

Now, let’s use next to move into the cin statement:

(gdb) next

What happened here? We weren't returned to the gdb prompt. Well the program is inside cin, waiting for

us to input something.

Input string here, and press enter.

5. The continue Command

continue will pick up execution of the program after it has reached a break point.

Let’s continue to the end of the program now:

(gdb) continue
Continuing.
olleh

Program exited normally.
(gdb)

Here we've reached the end of our program, you can see that it printed in reverse "input", which is what

was fed to cin.

6. The display and watch Commands:

display will show a variable’s contents at each step of the way in your program. Let’s start over in our

example. Delete the breakpoint at line 6

(gdb) del break 1

This deletes our first breakpoint at line 9. You can also clear all breakpoints w/ clear.

Now, let’s set a new breakpoint at line 14, the cout statement inside the for loop

(gdb) break 14
Breakpoint 2 at 0x40094c: file debug.cpp, line 14.
(gdb)

Run the program again, and enter the input. When it returns to the gdb command prompt, we will

display input[i] and watch it through the for loop with each next or breakpoint.

Breakpoint 2, main (argc=1, argv=0x7fffffffd008)
 at debug.cpp:14
14 cout << input[i];
(gdb) display input[i]
1: input[i] = 0 '\0'
(gdb) next
13 for(i=strlen(input);i>=0;i--) {
1: input[i] = 0 '\0'
(gdb) next

Breakpoint 2, main (argc=1, argv=0x7fffffffd008)
 at debug.cpp:14
14 cout << input[i];
1: input[i] = 111 'o'
(gdb) next
13 for(i=strlen(input);i>=0;i--) {
1: input[i] = 111 'o'
(gdb) next

Here we stepped through the loop, always looking at what input[i] was equal to.

We can also watch a variable, which allows us to see the contents at any point when the memory changes.

(gdb) watch input
Watchpoint 2: input
(gdb) continue
Continuing.
hello
Watchpoint 2: input

Old value =
"\030\320\377\377\377\177\000\000\065\n@\000\000\00 0\000\000\210\373\2
40\031\065\000\000\000\360\t@", '\000' <repeats 13 times>,
"0\b@\000\000\000\000\000\000", <incomplete sequenc e \320>
New value =
"h\320\377\377\377\177\000\000\065\n@\000\000\000\0 00\000\210\373\240\
031\065\000\000\000\360\t@", '\000' <repeats 13 tim es>,

"0\b@\000\000\000\000\000\000", <incomplete sequenc e \320>
0x000000352067b82a in std::basic_istream<char, std: :char_traits<char>
>& std::operator>><char, std::char_traits<char>
>(std::basic_istream<char, std::char_traits<char> > &, char*) () from
/usr/lib64/libstdc++.so.6

(gdb) continue
Continuing.
Watchpoint 2: input

Old value =
"h\320\377\377\377\177\000\000\065\n@\000\000\000\0 00\000\210\373\240\
031\065\000\000\000\360\t@", '\000' <repeats 13 tim es>,
"0\b@\000\000\000\000\000\000", <incomplete sequenc e \320>
New value =
"he\377\377\377\177\000\000\065\n@\000\000\000\000\ 000\210\373\240\031
\065\000\000\000\360\t@", '\000' <repeats 13 times> ,
"0\b@\000\000\000\000\000\000", <incomplete sequenc e \320>
0x000000352067b82a in std::basic_istream<char, std: :char_traits<char>
>& std::operator>><char, std::char_traits<char>
>(std::basic_istream<char, std::char_traits<char> > &, char*) () from
/usr/lib64/libstdc++.so.6

7. The where (or bt) Command

The where (or bt) command prints a backtrace of all stack frames. This may not make much sense but it

is useful in seeing where our program crashes.

Let’s modify our program just a little so that it will crash:

#include <iostream>
#include <string.h>

using namespace std;

int main(){
 char *input = NULL;
 int i = 0;

 cin >> input;

 for(i = strlen(input); i >= 0; i--){
 cout << input[i];
 }
 cout << endl;

 return 0;
}

Here we've changed input to be a pointer to a char and set it to NULL to make sure it doesn’t point

anywhere until we set it. Recompile and run gdb on it again to see what happens when it crashes.

(gdb) r
Starting program: /nfs/farm/classes/eecs/fall2013/e ecs161-
001/private/a.out
hello

Program received signal SIGSEGV, Segmentation fault .
0x000000352067b826 in std::basic_istream<char, std: :char_traits<char>
>& std::operator>><char, std::char_traits<char>
>(std::basic_istream<char, std::char_traits<char> > &, char*) () from
/usr/lib64/libstdc++.so.6

(gdb) where
#0 0x000000352067b826 in std::basic_istream<char,
std::char_traits<char> >& std::operator>><char, std ::char_traits<char>
>(std::basic_istream<char, std::char_traits<char> > &, char*) () from
/usr/lib64/libstdc++.so.6
#1 0x0000000000400943 in main (argc=1,
 argv=0x7fffffffd008) at debug.cpp:11

(gdb)

We see at the bottom, two frames. #1 is the top most frame and shows where we crashed. Use the up

command to move up the stack.

(gdb) up
#1 0x0000000000400943 in main (argc=1,
 argv=0x7fffffffd008) at debug.cpp:11
11 cin >> input;

(gdb)

Here we see line #11

11 cin >> input;

The line where we crashed.

Here are some more tutorials for the gdb:

http://www.cs.cmu.edu/~gilpin/tutorial/
https://sourceware.org/gdb/current/onlinedocs/gdb/

(3 pts) Implementing 1-D arrays in assignment 5

Task 1: Create a C-style string for sentence/paragraph and read a sentence/paragraph from the

user.

• You can make a static array for this, but make sure your getline has the appropriate

length.

• Use cin.getline(array_name, num_chars_to_read) for C-style strings.

• What do you think may happen if you enter more characters than specified by

num_chars_to_read in cin.getline()? The code below may help this problem.
if (cin.fail()) {
 cin.ignore(256,’\n’); //get rid of everything l eftover
 cin.clear(); //reset the failbit for the next c in
}

Task 2: Create an array of C++ strings for the N words that user wants to search for and read

those words from the user.

• Ask the user how many words they want to search for.

• Create an array of that many words

• Read each word from the user. Remember, you would use getline for C++ strings.
getline(cin, word_array_name[i]);

You need to have a main function that asks for a sentence/paragraph and for the N words. After
getting inputs from user, print out both arrays to check if they are working properly. Remember
to check memory leaks as well.

If any of your functions are more than 10 lines of code, what can you do to make it
smaller? If you are having difficulty thinking of how to make it smaller, then ask a TA to
help you!!!

Show your completed work to the TAs for credit. You will not get points if you do not get
checked off!

