The Chow-Liu Algorithm

The Goal

Given a finite set of samples in a dataset, estimate the underlying n-dimensional discrete probability distribution using a tree model.

Trees

What is a tree?
• The variables in the dataset are the vertices \(V \)
• There are edges in the set \(E \) that connect the vertices
• We’ll assume the edges are undirected for now
• A graph \((V,E)\) is a tree if it is connected and has no cycles

Technical point: We will allow our trees to be a forest ie. the tree model we learn may be disconnected

Trees

• In a directed tree, we pick a vertex as the root
• We then turn the edges into directed edges and orient the edges away from the root
• This means that each vertex has at most one parent (but may have more than one child)
Tree Models

Notation:
• \(\mathbf{x} \) (as in bold x) is an n-dimensional vector ie. \(\mathbf{x} = (x_1, x_2, ..., x_n) \)
• Each \(x_i \) in \(\mathbf{x} \) is a variable
• \(P(\mathbf{x}) \) is a joint probability distribution of \(n \) discrete variables \(x_1, x_2, ..., x_n \)

Tree Models

• We want to approximate the true joint probability distribution using tree models of the form:
 \[
 P_t(\mathbf{x}) = \prod_{i=1}^{n} P(x_i | x_{\pi(i)})
 \]
• \(\pi(i) \) means “parent of variable i”
• If \(i \) is the root then \(\pi(i) \) is the empty set:
 \[
 P(x_i | x_{\pi(i)}) = P(x_i)
 \]

Closeness of approximation

• Let \(P(\mathbf{x}) \) and \(P_t(\mathbf{x}) \) be two probability distributions of \(n \) discrete variables \(\mathbf{x} = (x_1, x_2, ..., x_n) \).
• Let
 \[
 KL(P, P_t) = \sum_{\mathbf{x}} P(\mathbf{x}) \log \frac{P(\mathbf{x})}{P_t(\mathbf{x})}
 \]
 Note: This summation is over all configurations of \((x_1, x_2, ..., x_n) \).

The formula for \(KL(P, P_t) \) is called the Kullback-Leibler divergence (or KL divergence for short).
Kullback-Leibler Divergence

- We’ll rewrite the KL divergence as:
 \[KL(P, P_t) = \sum_x P(x) \log P(x) - \sum_x P(x) \log P_t(x) \]
- The first term doesn’t depend on \(P_t \).
- The second term is known as the cross-entropy between \(P \) and \(P_t \).
- Properties of KL divergence:
 - \(KL(P, P_t) \geq 0 \)
 - \(KL(P, P_t) = 0 \) if and only if \(P(x) = P_t(x) \) for all \(x \)

A Minimization Problem

Given:
- An nth-order probability distribution \(P(x_1, x_2, \ldots, x_n) \) with \(x_i \) being discrete
- \(T_n \)- The set of all possible first-order dependence trees

Find the optimal first-order dependence tree \(\tau \) such that \(KL(P, P_\tau) \leq KL(P, P_t) \) for all \(t \in T_n \).

Exhaustive Search

- Why not just search over all possible trees?
- Not feasible -- there are \(n^{(n-2)} \) possible trees with \(n \) vertices (from Cayley’s formula)
- We will turn the search into a maximum weight spanning tree (MWST) problem

Mutual Information

- Define the mutual information \(I(x_i, x_j) \) between two variables \(x_i \) and \(x_j \) to be:
 \[I(x_i, x_j) = \sum_{x_i, x_j} P(x_i, x_j) \log \left(\frac{P(x_i, x_j)}{P(x_i)P(x_j)} \right) \]
- Key insight: a probability distribution of tree dependence \(P_t(x) \) is an optimum approximation to \(P(x) \) iff its tree model has maximum weight
- Proof to follow
Proof

\[KL(P, P_t) = \sum_x P(x) \log P(x) - \sum_x P(x) \sum_{i=1}^{n} \log P(x_i|x_{\pi(i)}) \]
\[= \sum_x P(x) \log P(x) - \sum_x P(x) \sum_{i=1, \sigma \text{root}} P(x_i|x_{\pi(i)}) \log \frac{P(x_i|x_{\pi(i)})}{P(x_{\pi(i)})} \]
\[= \sum_x P(x) \log P(x) - \sum_x P(x) \sum_{i=1, \sigma \text{root}} P(x_i|x_{\pi(i)}) \frac{P(x_i|x_{\pi(i)})}{P(x_{\pi(i)})} \]
\[- \sum_x P(x) \sum_{i=1}^{n} \log P(x_i) \]

Proof (continued)

Note that: \(-\sum_x P(x) \log P(x) = -\sum_i P(x_i) \log P(x_i)\)

To see this, suppose \(x = (x_1, x_2)\) let all variables are binary, let \(i=1\)
\[-\sum_x P(x) \log P(x) \]
\[= -[P(x_1 = 0, x_2 = 0) \log P(x_1 = 0) + P(x_1 = 0, x_2 = 1) \log P(x_1 = 0) + \]
\[P(x_1 = 1, x_2 = 0) \log P(x_1 = 1) + P(x_1 = 1, x_2 = 1) \log P(x_1 = 1)] \]
\[= -[P(x_1 = 0) \log P(x_1 = 0) + P(x_1 = 1) \log P(x_1 = 1)] \]
\[= -\sum_{x_1} P(x) \log P(x_1) = -\sum_{x_1} P(x) \log P(x_1) \]

Proof (continued)

In the same way:
\[\sum_x P(x) \log \frac{P(x_i|x_{\pi(i)})}{P(x_{\pi(i)})} \]
\[= \sum_{x_i \neq x_{\pi(i)}} P(x_i|x_{\pi(i)}) \log \frac{P(x_i|x_{\pi(i)})}{P(x_{\pi(i)})} = I(x_i|x_{\pi(i)}) \]

Proof (continued)

One more piece of notation:
\[H(x) = -\sum_x P(x) \log P(x) \]
\[H(x_t) = -\sum_{x_t} P(x_t) \log P(x_t) \]

Substituting the expressions above and from pg 12 into the last line of pg 13:
\[KL(P, P_t) = -\sum_{i=1}^{n} I(x_i|x_{\pi(i)}) + \sum_{i=1}^{n} H(x_i) - H(x) \]
Proof

\[KL(P, P_\pi) = -\sum_{i=1}^{n} I(x_i, x_{\pi(0)}) + \sum_{i=1}^{n} H(x_i) - H(x) \]

Mutual information is always \(\geq 0 \)

Independent of the dependence tree

Minimizing \(I(P, P_\pi) \) is the same as maximizing the total branch weight:

\[\sum_{i=1}^{n} I(x_i, x_{\pi(0)}) \]

The algorithm

- First calculate all \(n(n-1)/2 \) pairwise mutual information measures
- Use Kruskal’s algorithm to construct maximum weight spanning tree:
 - Construct tree one edge at a time, in decreasing order of the weights
 - If all weights are > 0, you get one connected component
 - Running time is \(O(n^2) \) for \(n \) variables because you have to consider all \(n(n-1)/2 \) edges

Estimation

- But in order to calculate mutual information \(I(x_i, x_j) \), you need the probability distribution \(P(x) \)
- Need to estimate the mutual information from a finite set of samples using maximum likelihood estimation

Suppose you are given \(s \) independent samples \(x^1, x^2, ..., x^s \) of a discrete variable \(x \). Each sample is an \(n \)-component vector \(x_k = (x_k^1, x_k^2, ..., x_k^n) \).

Define:

\[n_{uv}(i, j) = \# \text{ of samples with } x_i = u \text{ and } x_j = v \]

\[f_{uv}(i, j) = \frac{n_{uv}(i, j)}{\sum_{u,v} n_{uv}(i, j)} \]

\[f_u(i) = \sum_v f_{uv}(i, j) \]

Estimation

Maximum Likelihood Estimator for \(P(x_i = u, x_j = v) \)

Maximum Likelihood Estimator for \(P(x_i = u) \)
Estimation

Calculate:
\[\hat{I}(x_i, x_j) = \sum_{u,v} f_{uv}(i,j) \log \frac{f_{uv}(i,j)}{f_u(i)f_v(j)} \]

Use \(\hat{I}(x_i, x_j) \) in Kruskal’s algorithm instead of \(I(x_i, x_j) \)

The entire algorithm

1. Compute marginal counts \(f_u(i) \) and pairwise counts \(f_{uv}(i,j) \)
2. Compute mutual information \(\hat{I}(x_i, x_j) \) for all pairs \(x_i \) and \(x_j \)
4. Set the parameters in the CPTs for each node to be their maximum likelihood estimates:
 \[P(x_i | x_{\pi(i)}) = \frac{f_{uv}(i, \pi(j))}{f_u(i)} \]

Steps 1-3 dominate the complexity – they all take \(O(n^2) \) time

References