Approximate Inference 1

Forward Sampling

- This section on approximate inference relies on samples / particles
- Full particles: complete assignment to all network variables eg. \(X_1 = x_1, X_2 = x_2, \ldots, X_N = x_N\)

Forward Sampling

- Topological sort or order: An ordering of the nodes in the DAG where X comes before Y in the ordering if there is a directed path from X to Y in the graph.
- A topological order is equivalent to a partial order on the nodes of the graph
- There may be several topological orderings

Examples of Topological orders:
- A,B,C,D
- B,A,C,D

Student Example
Forward Sampling

Topological ordering: D, I, G, S, L
1. Sample D from P(D) (Say you get D=high)
2. Sample I from P(I) (Say you get I=low)
3. Sample G from P(G|I=low,D=high) (Say you get G=C)
4. Sample S from P(S|I=low) (Say you get S=low)
5. Sample L from P(L|G=C) (Say you get L=weak)

You now have a sample (D=high, I=low, G=C, S=low, L=weak)

Forward Sampling

Suppose you want to calculate $P(X_1=x_1, X_2=x_2, \ldots, X_n=x_n)$ using forward sampling on a Bayesian network. The algorithm:
1. Do a topological sort of the nodes in the Bayesian network.
2. For $j = 1$ to NUM_SAMPLES
 - For each node i in the ordering (starting from the top of the Bayesian network down)
 - Sample the value \tilde{x}_i from the distribution $P(X_i | \text{Parents}(X_i))$
 - Add $\{\tilde{x}_1, \tilde{x}_2, \ldots, \tilde{x}_i\}$ to your collection of samples
3. Let $\hat{x}_1, \hat{x}_2, \ldots, \hat{x}_n$ be the samples with $X_1=x_1, X_2=x_2, \ldots, X_n=x_n$
 - \hat{x}_i is the ith sample.

Forward Sampling

- How do you sample from $P(X_i | \text{Parents}(X_i))$?
- Note: $P(X_i | \text{Parents}(X_i))$ is a multinomial distribution $P(x_i^1, \ldots, x_i^K | \theta_1, \ldots, \theta_K)$?

- Generate a sample s uniformly from $[0,1]$
- Partition interval into k subintervals: $[0, \theta_1), [\theta_1, \theta_1+\theta_2), \ldots$
- More generally, the ith interval is $[\sum_{j=1}^{i-1} \theta_j, \sum_{j=1}^{i} \theta_j)$
- If s is in the ith interval, the sample value is x_i
- Use binary search to find the interval for s in time $O(\log k)$
Forward Sampling

Suppose your list of samples looks like the following table:

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>G</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>low</td>
<td>B</td>
<td>low</td>
<td>weak</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>strong</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>weak</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>strong</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>C</td>
<td>low</td>
<td>weak</td>
</tr>
</tbody>
</table>

$P(\text{I=high}) = 3/5 = 0.6$

Note that this value becomes a lot more accurate as the number of samples heads to infinity.

Forward Sampling

• From a set of particles $D = \{\xi[1], ..., \xi[M]\}$, we can estimate the expectation of any function f as:

$$\hat{E}_D(f) = \frac{1}{M} \sum_{m=1}^{M} f(\xi[m])$$

• To estimate $P(y)$

$$\hat{P}_D(y) = \frac{1}{M} \sum_{m=1}^{M} I\{y[m] = y\}$$

This is the values of the variables in Y in the particle $\xi[m]$

Forward Sampling

How accurate is this estimate? Using the Hoeffding bound:

$$P_D(\hat{P}_D(y) \not\in [P(y) - \varepsilon, P(y) + \varepsilon]) \leq 2e^{-2M\varepsilon^2}$$

How many samples are required to achieve an estimate whose error is bounded by ε, with probability at least $(1-\delta)$? Setting

$$2e^{-2M\varepsilon^2} \leq \delta$$

we get $M \geq \frac{\ln(2/\delta)}{2\varepsilon^2}$
Forward Sampling

How accurate is this estimate? Using the Chernoff bound:

\[
P_D(\hat{D}(y) \notin P(y)(1 \pm \varepsilon)) \leq 2e^{-\frac{M\varepsilon^2}{2}}
\]

Note: This requires us to know \(P(y) \)

How many samples are required to achieve an estimate whose error is bounded by \(\varepsilon \), with probability at least \((1-\delta) \)?

\[
M \geq \frac{3}{\varepsilon^2} \frac{\ln(2/\delta)}{P(y)}
\]

Rejection Sampling

What if we want to estimate \(P(y|E=e) \)?

- **Rejection sampling**: do forward sampling but throw out samples where \(E \neq e \)

Example:

<table>
<thead>
<tr>
<th>D</th>
<th>I</th>
<th>G</th>
<th>S</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>low</td>
<td>B</td>
<td>low</td>
<td>weak</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>strong</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>weak</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>A</td>
<td>high</td>
<td>strong</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>C</td>
<td>low</td>
<td>weak</td>
</tr>
</tbody>
</table>

Rejection Sampling

What if the evidence \(E=e \) is very very rare?

- For example, if \(P(e) = 0.001 \), then for 10,000 samples, we get 10 unrejected samples
- To obtain at least \(M^* \) unrejected samples, we need to generate on average \(M = M^*/P(e) \) samples
- If evidence is rare, we end up generating a lot of samples which wastes time
Rejection Sampling

Bad news:
– Rare evidence is the norm!
– As # of evidence variables \(k = |E| \) grows, the probability of the evidence decreases exponentially with \(k \)

Need something better than rejection sampling!

Likelihood Weighting

Intuition: Weight samples according to probability of the evidence

<table>
<thead>
<tr>
<th>I</th>
<th>S</th>
<th>P(I(\rightarrow)S)</th>
</tr>
</thead>
<tbody>
<tr>
<td>low</td>
<td>low</td>
<td>0.95</td>
</tr>
<tr>
<td>low</td>
<td>high</td>
<td>0.05</td>
</tr>
<tr>
<td>high</td>
<td>low</td>
<td>0.2</td>
</tr>
<tr>
<td>high</td>
<td>high</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Drawing \(I = \text{high} \) and \(S = \text{high} \) should be 80% of a sample

Drawing \(I = \text{low} \) and \(S = \text{high} \) should be 5% of a sample

Likelihood Weighting

Weighted particles:

\[D = \langle \xi[1], w[1] \rangle, \ldots, \langle \xi[M], w[M] \rangle \]

Estimate:

\[\hat{P}_D(y | e) = \frac{\sum_{m=1}^{M} w[m] I\{y[m] = y\}}{\sum_{m=1}^{M} w[m]} \]
Likelihood Weighting

Procedure LW-Sample(
 β, // Bayesian network over \(X \)
 Z=z // Event in the network
)
1. Let \(X_1, \ldots, X_n \) be a topological ordering of \(X \)
2. \(w \leftarrow 1 \)
3. for \(i = 1, \ldots, n \)
4. \(u_i \leftarrow x_{Pa_{u_i}} \) // Assignment to \(Pa_{u_i} \) in \(x_1, \ldots, x_{i-1} \)
5. if \(X_i \in Z \) then
6. Sample \(x_i \) from \(P(X_i \mid u_i) \)
7. else
8. \(x_i \leftarrow z_{\setminus X} \) // Assignment to \(X_i \) in \(z \)
9. \(w \leftarrow w \cdot P(x_i \mid u_i) \) // Multiply weight by probability of desired value
10. return \((x_1, \ldots, x_n), w\)