Exact Inference: Variable Elimination

Complexity of Variable Elimination

Complexity

- Exponential size of the factors ψ dominates the complexity
- If each variable has no more than v values
- And a factor ψ_i has a scope that contains k_i variables, then the number of entries N_i in ψ_i is: $N_i \leq v^{k_i}$

Complexity

- Complexity of Variable Elimination depends on the structure of the graph
- Note: the VE algorithm does not care if the graph is directed, undirected, or partially directed
Complexity

• Let Φ be a set of factors. We define $\text{Scope}[\Phi] = \bigcup_{\phi \in \Phi} \text{Scope}[\phi]$ to be the set of all variables appearing in one of the factors in Φ.

• We define \mathcal{H}_Φ to be the undirected graph whose nodes correspond to the variables in $\text{Scope}[\Phi]$ and where we have an edge $X_i \!-\! X_j \in \mathcal{H}_\Phi$ if and only if there exists a factor $\phi \in \Phi$ such that $X_i, X_j \in \text{Scope}[\phi]$.

(Informally) The undirected graph \mathcal{H}_Φ introduces a fully connected subgraph over the scope of each factor $\phi \in \Phi$, and hence is the minimal I-map for the distribution induced by Φ.

eg. $\Phi = \{\phi_1(X_1, X_2, X_3), \phi_2(X_3, X_4), \phi_3(X_4, X_5, X_6, X_7)\}$

Complexity

• Proposition 9.1: Let P be a distribution defined by multiplying the factors in Φ and normalizing to define a distribution. Letting $X = \text{Scope}[\Phi]$, $P(X) = \frac{1}{Z} \prod_{\phi \in \Phi} \phi$ where $Z = \sum_X \prod_{\phi \in \Phi} \phi$.

Then \mathcal{H}_Φ is the minimal Markov network I-map for P, and the factors Φ are a parameterization of this network that defines the distribution P.

• For a set of factors Φ defined by a Bayesian network \mathcal{G}, in the case without evidence, the undirected graph \mathcal{H}_Φ is the moralized graph of \mathcal{G}.

• The product of the factors is a normalized distribution and the partition function is simply 1.
Complexity

When variable X is eliminated:
- Create a single factor ψ that contains X and all of the variables Y with which it appears in factors.
- Eliminate X from ψ, replacing it with a new factor τ that contains all of the variables Y but does not contain X.
- Let Φ_X be the resulting set of factors.

Complexity

How does the graph H_{Φ_X} differ from H_Φ?
- Constructing ψ creates edges between all $Y \in Y$ (some were present in H_Φ, others are fill edges, which are introduced in the elimination step).
- Eliminating X from ψ to construct τ has the effect of removing X and all of its incident edges from the graph.

Complexity

Eliminating C

Complexity

Every factor that appears in one of the steps in the algorithm is reflected in the graph as a clique.
Complexity

Let Φ be a set of factors over $\mathcal{X} = \{X_1, \ldots, X_n\}$, and $< \text{ be an elimination ordering for some subset } \mathcal{X} \subseteq \mathcal{X}$.

The induced graph $I_{\Phi,<}$ is an undirected graph over \mathcal{X}, where X_i and X_j are connected by an edge if they both appear in some intermediate factor ψ generated by the VE algorithm using $<$ as an elimination ordering.

Complexity

Let $I_{\Phi,<}$ be the induced graph for a set of factors Φ and some elimination ordering $<$. Then:

1. The scope of every factor generated during the variable elimination process is a clique in $I_{\Phi,<}$.
2. Every maximal clique in $I_{\Phi,<}$ is the scope of some intermediate factor in the computation.

(Proof omitted here)

Complexity

The induced graph for the student example. The edge G-S is the only fill edge introduced.

Clique tree in the induced graph

Complexity

- The width of an induced graph is defined as the number of nodes in the largest clique in the graph minus 1.
- The induced width $w_{\mathcal{K},<}$ of an ordering $<$ relative to a graph \mathcal{K} (directed or undirected) is defined as the width of the graph $I_{\mathcal{K},<}$ induced by applying VE to \mathcal{K} using the ordering $<$.
- The tree-width of a graph \mathcal{K} to be its minimal induced width $w^*_{\mathcal{K}} = \min_{<} w(I_{\mathcal{K},<})$.
Complexity

The tree-width provides us a bound on the best performance we can hope for by applying VE to a probabilistic model that factorizes over \mathcal{X}.

Finding Elimination Orderings

Bad News:
- Determining whether there exists an elimination ordering achieving an induced width $\leq K$ (for some bound K) on a graph H is NP-complete.
- Finding the optimal elimination order is NP-hard.

Even worse news:
- Even if we had the optimal elimination ordering, inference might require exponential time due to a large induced width.

Finding Elimination Orderings

NP-completeness? We remain unfazed!

How to find elimination orderings:
1. Graph theoretic approaches
2. Heuristic approaches
Finding Elimination Orderings

Graph-Theoretic Approaches
- Eliminate nodes such that you don’t produce fill edges
- Use the clique tree
 - Start eliminating from the leaves of the clique tree
- What if you don’t have the clique tree?
 - Use the Max-Cardinality algorithm (see pg 312 in book) on the original graph

Heuristic approaches use a greedy algorithm (could be done deterministically or stochastically)
- Requires a heuristic cost function.
- Examples of costs:
 - Min-neighbors: # of neighbors
 - Min-weight: domain cardinality of neighbors
 - Min-fill: # of fill edges added
 - Weighted min-fill: sum of weights of fill edges (weight = domain cardinality of vertices connected to the edge)

Heuristics work well in practice
- Min-fill and weighted min-fill tend to work the best