Exact Inference 5: Clique Trees

Clique Tree Calibration

• In the previous lecture, we used the clique tree to compute the probability of a single variable eg. P(J)
• Root clique must contain J
• Messages passed upstream (toward root)

Clique Tree Calibration

• But we often want to compute the probability of a large number of variables eg. P(J), P(C), P(H)
• What if we wanted to compute the probability of every random variable in the network?

Clique Tree Calibration

• The expensive way:
 – Run clique tree inference for each node
 – Cost is $O(c \times \text{number of nodes})$
• A little less expensive:
 – Make each clique the root and run inference
 – Cost is $O(c \times \text{number of cliques})$

Where $c = \text{cost of running clique tree inference}$
Clique Tree Calibration

• The smart way:
 – Notice that you end up calculating the same messages over and over again
 – Cache these result and reuse them in a clever way! => dynamic programming
 – Results in a cost of 2c

Clique Tree Calibration

• As long as the root clique is on the \(C_i \) side, exactly the same message is sent from \(C_i \) to \(C_j \) (regardless of which clique is the root)
• Same thing applies if the root is on the \(C_i \) side
• For any given clique tree, each edge has two messages associated with it – one for each direction
• If there are \(c \) cliques, there are \((c-1)\) edges and \(2(c-1)\) messages to compute

Clique Tree Calibration

• Let \(T \) be a clique tree. We say that \(C_i \) is ready to transmit to a neighbor \(C_j \) when \(C_i \) has messages from all of its neighbors except from \(C_j \).
• When \(C_i \) is ready to transmit to \(C_j \), it computes \(\delta_{i-j}(S_{i,j}) \) from all incoming messages (except from \(C_j \)).
• Then eliminating the variables in \(C_i - S_{i,j} \)
• Use dynamic programming to avoid recomputing the same message multiple times

Clique Tree Calibration

Sum-Product Belief Propagation

Procedure CTree-SP-Calibrate (
 \(\Phi \), // Set of factors
 \(T \) // Clique tree over \(\Phi \)
)
1. Initialize-Cliques
2. while exist \(i, j \) such that \(i \) is ready to transmit to \(j \)
3. \(\delta_{i}(S_{i,j}) \leftarrow \text{SP-MESSAGE}(ij) \)
4. for each clique \(i \)
5. \(\beta_i \leftarrow \psi_i \cdot \prod_{k \in \text{NB}_i} \delta_{k-i} \)
6. return \(\{ \beta_i \} \)
Clique Tree Calibration

- **Upward pass**: pick a root, send messages to root
- **Downward pass**: then send messages to the leaves
- In asynchronous version, each clique sends message as soon as it is ready

Message Passing: Sum Product

Example of a downward pass in the Student network:

\[
\begin{align*}
\delta_{2 \rightarrow 3}(G, I) & : \sum_C \psi(C) \times \delta_{1 \rightarrow 2} \\
\delta_{3 \rightarrow 5}(G, S) & : \sum_C \psi(C) \times \delta_{2 \rightarrow 3} \\
\delta_{4 \rightarrow 5}(G, J) & : \sum_C \psi(C) \times \delta_{3 \rightarrow 5} \\
\delta_{5 \rightarrow 1}(G, D) & : \sum_C \psi(C) \times \delta_{1 \rightarrow 5}
\end{align*}
\]

Clique Tree Calibration

- At the end, compute beliefs for all cliques in the tree by multiplying initial potential with each of the incoming messages
- **Corollary 10.2**: Assume that, for each clique \(i \), \(\beta_i \) is computed as in the Sum-Product Belief Propagation algorithm. Then

\[
\beta_i(C_i) = \sum_{X \setminus C_i} \tilde{P}_\phi(X)
\]
Clique Tree Calibration

- \(C_i \) computes the message to a neighboring clique \(C_j \) based on its initial potential \(\psi_i \) (not its modified potential \(\beta_i \))
- Modified potential already integrates information from \(C_j \) (would be double-counting factors in \(C_j \))

Clique Tree Calibration

- At the end, each clique contains the marginal (unnormalized) probability over the variables in its scope
- Can compute marginal probability of \(X \) by selecting the clique whose scope contains \(X \) and eliminating the redundant variables in the clique
 - If \(X \) appears in two cliques, we can pick either one
 - Both must agree on the marginal

Clique Tree Calibration

Two adjacent cliques \(C_i \) and \(C_j \) are said to be calibrated if
\[
\sum_{c_i \in S_{i,j}} \beta_i(C_i) = \sum_{c_j \in S_{i,j}} \beta_j(C_j)
\]

Clique Tree Calibration

A clique \(T \) is calibrated if all pairs of adjacent cliques are calibrated. For a calibrated clique tree, we use the term clique beliefs for \(\beta_i(C_i) \) and sepset beliefs for
\[
\mu_{i,j}(S_{i,j}) = \sum_{c_i \in S_{i,j}} \beta_i(C_i) = \sum_{c_j \in S_{i,j}} \beta_j(C_j)
\]
Calibrated Clique Trees as a Distribution

To see this, note that at calibration we have:

- Clique beliefs:
 \[\beta_j = \psi_j \cdot \prod_{k \in \mathbf{N}_B} \delta_{k \rightarrow i} \]

- Sepset beliefs:
 \[\mu_{i,j}(S_{i,j}) = \sum_{C_i \subseteq S_{i,j}} \beta_j(C_i) = \sum_{C_j \subseteq S_{j,i}} \psi_j \cdot \prod_{k \in \mathbf{N}_B} \delta_{k \rightarrow i} \]

\[= \sum_{C_i \subseteq S_{i,j}} \psi_j \cdot \delta_{j \rightarrow i} \prod_{k \in (N_B \setminus j)} \delta_{k \rightarrow i} \]
\[= \delta_{j \rightarrow i} \delta_{i \rightarrow j} \]

Calibrated Clique Trees as a Distribution

Using the clique beliefs and sepset beliefs, we have:

\[\tilde{P}_q(X) = \prod_{i \in F} \beta_j(C_i) / \prod_{i \in F} \mu_{i,j}(S_{i,j}) \]

Each message \(\delta_{i \rightarrow j} \) appears once in the numerator and once in the denominator:

\[\tilde{P}_q(X) = \prod_{i \in F} \psi_j(C_i) \]
Calibrated Clique Trees as a Distribution

The measure induced by a calibrated tree T is defined as:

$$Q_T = \frac{\prod_{i \in V_T} \beta_i(C_i)}{\prod_{(i-j) \in E_T} \mu_{i,j}(S_{i,j})}$$

where

$$\mu_{i,j} = \sum_{C_i \in S_{i,j}} \beta_i(C_i) = \sum_{C_j \in S_{i,j}} \beta_i(C_i)$$

Calibrated Clique Trees as a Distribution

Theorem 10.4: Let T be a clique tree over Φ, and let $\beta_i(C_i)$ be a set of calibrated potentials for T. Then, $\tilde{P}_0(X) \propto Q_T$ if and only if, for each $i \in V_T$, we have that $\beta_i(C_i) \propto \tilde{P}_0(C_i)$

(Proof Omitted)

This alternate representation of the joint measure directly reveals the clique marginals $\beta_i(C_i)$

Message Passing: Belief Update

First message from C_j to C_i

Second message from C_i to C_j (once it receives messages from all neighbors except j)

- Previously: final potential (β_i) not used in message to C_j (would double count information from C_j)
- Different approach: multiply all messages together and divide resulting factor by $\delta_{j,i}$ (removes C_j’s contribution)
Message Passing: Belief Update

• Let X and Y be disjoint sets of variables, and let \(\phi_1(X,Y) \) and \(\phi_2(Y) \) be two factors.

• We define the factor division \(\phi_1/\phi_2 \) to be a factor \(\psi \) of scope X, Y defined as follows:

\[
\psi(X,Y) = \frac{\phi_1(X,Y)}{\phi_2(Y)}
\]

Where we define 0/0 = 0. The operation not well defined if denominator is 0 and numerator isn’t

Message Passing: Belief Update

New version of message passing:

\[
\beta_i = \psi_i \cdot \prod_{k \in N_b} \delta_{k \rightarrow i}
\]

(As before)

\[
\delta_{i \rightarrow j} = \frac{\sum C \cdot \beta_i}{\delta_{j \rightarrow i}}
\]

Note the division

Message Passing: Belief Update

Example: Using CTree-SP-Calibrate as the Message Passing algorithm:

\[
\delta_{i \rightarrow j}(D) = \frac{\psi_2(G,I,D) \cdot \delta_{i \rightarrow 2}(G,I)}{\psi_2(G,I,D) \cdot \delta_{i \rightarrow 2}(G,I)}
\]

Note that:

\[
\sum_{G,I} \beta_i(G,I,D) \cdot \delta_{i \rightarrow 2}(G,I) = \sum_{G,I} \psi_2(G,I,D) \cdot \delta_{i \rightarrow 2}(G,I)
\]

(Approaches are equivalent)
Message Passing: Belief Update

Belief-update Message Passing Algorithm

Procedure CTree-BU-Calibrate (
\(\Phi, \) // Set of factors
\(T \) // Clique tree over \(\Phi \))
1. Initialize-CTree
2. while exists an uninformed clique in \(T \)
3. Select \((i\rightarrow j) \in E_T\)
4. BU-Message(i,j)
5. return \(\{\beta\}_i \)

Note: any arbitrary pair can be chosen without violating the correctness of the algorithm

The following are the implications (stated without proof here):
• Sum-Product and Belief-Update message passing are equivalent
• Belief-update message passing guaranteed to converge to the correct marginals
• Message schedule that guarantees convergence to the correct clique marginals in two passes:
 – Follow upward-downward pass schedule using any arbitrarily chosen root clique \(C_r \).

Constructing a Clique Tree
Constructing a Clique Tree

How do we construct a clique tree?
1. Through executing Variable Elimination
 • A clique C_i corresponds to a factor ψ_i
 • Undirected edge connects C_i and C_j when x_i is used directly in the computation of ψ_j (or vice versa)
 • Cliques in clique tree are maximal cliques in the induced graph

2. Manipulating the graph directly
 1. Given a set of factors, construct the undirected graph \mathcal{H}_Φ
 2. Triangulate \mathcal{H}_Φ to construct a chordal graph \mathcal{H}^*
 3. Find cliques in \mathcal{H}^*, and make each one a node in a cluster graph
 4. Run the maximum spanning tree algorithm on the cluster graph to construct a tree

Constructing a Clique Tree

• Triangulation: constructing a chordal graph that subsumes an existing graph \mathcal{H}
• Minimum triangulation: largest clique in the resulting chordal graph has minimum size
• Finding the minimum triangulation is NP-hard – need to resort to heuristics

• Finding the maximal clique in a general graph is NP-hard
 – But for chordal graphs, this is easy (number of possible approaches)
• Finding edges in clique tree
 – Use maximum spanning tree algorithm
 – Nodes are the maximal cliques, edges have weight equal to $|C_i \cap C_j|$