Bayesian Inference

• The MLE is a frequentist inference method. There is another approach to inference called Bayesian inference.
• The key differences between frequentist and Bayesian approaches are shown in the next slides
• See “A primer on Bayesian statistics in Health Economics and Outcomes research” by Anthony O’Hagan and Bryan R. Luce
Bayesian Inference

The Nature of Probability

<table>
<thead>
<tr>
<th>Frequentist</th>
<th>Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Probability is a limiting, long-run frequency</td>
<td>Probability measures a personal degree of belief</td>
</tr>
<tr>
<td>It only applies to events that are (at least in principle) repeatable</td>
<td>It applies to any event or proposition about which we are uncertain</td>
</tr>
</tbody>
</table>

Bayesian Inference

The Nature of Parameters

<table>
<thead>
<tr>
<th>Frequentist</th>
<th>Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Parameters are not repeatable or random</td>
<td>Parameters are unknown</td>
</tr>
<tr>
<td>They are therefore not random variables, but fixed (unknown) quantities</td>
<td>They are therefore random variables</td>
</tr>
</tbody>
</table>
Bayesian Inference

The Nature of Inference

<table>
<thead>
<tr>
<th>Frequentist</th>
<th>Bayesian</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not (although it appears to) make statements about parameters</td>
<td>Makes direct probability statements about parameters</td>
</tr>
<tr>
<td>Interpreted in terms of long-run repetition</td>
<td>Interpreted in terms of evidence from the observed data</td>
</tr>
</tbody>
</table>

Bayesian inference

Bayesian inference:

1. Choose probability density $f(\theta)$ – called the prior distribution that expresses our beliefs about a parameter θ before we see any data.
2. We choose a statistical model $f(x|\theta)$
3. After observing data X_1, \ldots, X_n, we update our beliefs and calculate the posterior distribution $f(\theta|X_1, \ldots, X_n)$
Bayesian Inference

Suppose we have \(n \) independent, identically distributed observations \(X_1, \ldots, X_n \). The joint density of the data is:

\[
f(x_1, \ldots, x_n \mid \theta) = \prod_{i=1}^{n} f(x_i \mid \theta) = L_n(\theta)
\]

The likelihood is:

\[
f(\theta \mid x_1, \ldots, x_n) = \frac{f(x_1, \ldots, x_n \mid \theta) f(\theta)}{f(x_1, \ldots, x_n)} = \frac{f(x_1, \ldots, x_n \mid \theta) f(\theta)}{\int f(x_1, \ldots, x_n \mid \theta) f(\theta) d\theta}
\]

\[
= \frac{L_n(\theta) f(\theta)}{\int L_n(\theta) f(\theta) d\theta} = \alpha L_n(\theta) f(\theta)
\]

\[\therefore f(\theta \mid x_1, \ldots, x_n) \propto L_n(\theta) f(\theta)\]

Prior (Note: We are not committing to a particular \(\theta \) but using the entire distribution of \(\theta \))

Posterior Distribution

Bayesian Inference

What do you do with the posterior distribution?

- Use the entire distribution (can be clumsy sometimes)
- Get a point estimate by summarizing the center of the posterior – use the mean or mode
- The posterior mean is:

\[
\overline{\theta}_n = E[\theta] = \int \theta f(\theta \mid x_1, \ldots, x_n) d\theta = \frac{\int \theta L_n(\theta) f(\theta) d\theta}{\int L_n(\theta) f(\theta) d\theta}
\]
Conjugate Priors

Let’s redo the first candy example except this time, we will put a $Beta(\alpha, \beta)$ prior on θ. Recall that θ is the probability a candy will be cherry flavored. The posterior has the form:

$$f(\theta|x_1, ..., x_n) = \frac{f(\theta)L_n(\theta)}{\int f(\theta)L_n(\theta)d\theta}$$

$$f(\theta) = Beta(\alpha, \beta) = \frac{\Gamma(\alpha + \beta)}{\Gamma(\alpha)\Gamma(\beta)} \theta^{\alpha-1}(1-x)^{\beta-1}$$

where $\Gamma(z) = (z - 1)!$

Let’s take a look at this term in the denominator
Conjugate Priors

Below is the Beta distribution with alpha parameter = $c + \alpha$ and beta parameter $= l + \beta$. Since it is a known pdf, it will integrate to 1.

$$\int Beta(c + \alpha, l + \beta) \, d\theta = \int \frac{\Gamma(c + \alpha + l + \beta)}{\Gamma(c + \alpha)\Gamma(l + \beta)} \theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1} \, d\theta = 1$$

This is the term in the denominator from the previous page. It is almost a Beta distribution except it is missing the normalization constant in front.

$$\int \theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1} \, d\theta$$

Let’s call the normalization constant (the expression with the Gammas) c. The expression above becomes:

$$\int \theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1} \, d\theta = \frac{1}{c} \int c \theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1} \, d\theta = \frac{1}{c}$$

Continuing from where we left off…

$$f(\theta | x_1, \ldots, x_n) = \frac{\theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1}}{\int \theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1} \, d\theta}$$

$$= \frac{\theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1}}{\frac{\Gamma(c + \alpha + l + \beta)}{\Gamma(c + \alpha)\Gamma(l + \beta)}} = \frac{\Gamma(c + \alpha + l + \beta)}{\Gamma(c + \alpha)\Gamma(l + \beta)} \theta^{c + \alpha - 1}(1 - \theta)^{l + \beta - 1}$$

$$= Beta(c + \alpha, l + \beta)$$
Conjugate Priors

- A conjugate prior is a family of prior probability distributions with the property that the posterior also belongs to that family.
- eg. the conjugate prior for a Bernoulli is a Beta distribution
- Other useful conjugate priors:

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Conjugate Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>Normal</td>
</tr>
<tr>
<td>Binomial</td>
<td>Beta</td>
<td>Beta</td>
</tr>
<tr>
<td>Poisson</td>
<td>Gamma</td>
<td>Gamma</td>
</tr>
<tr>
<td>Multinomial</td>
<td>Dirichlet</td>
<td>Dirichlet</td>
</tr>
</tbody>
</table>

Why are they useful?
- Since we know the form of the posterior, we can easily calculate statistics such as the mean.
- For example, we know:
 \[E[\text{Beta}(\alpha, \beta)] = \frac{\alpha}{\alpha + \beta} \]
- Thus, the mean for the candy example above is:
 \[E[\text{Beta}(c + \alpha, l + \beta)] = \frac{\alpha + c}{\alpha + \beta + l + c} \]
Conjugate Priors

• You can think of α and β in the posterior distribution as “virtual counts”

• eg. Using a uniform prior $\text{Beta}(1,1)$, the mean of the posterior becomes:

$$E[\text{Beta}(c+1,l+1)] = \frac{\alpha + c}{\alpha + \beta + l + c} = \frac{1 + c}{2 + l + c}$$

Conjugate Priors

• If we observe no data, ie. $c=0$, $l=0$, the posterior mean is $\frac{1}{2}$, which is what we would expect since we have to pick between the two flavors of lime and cherry

• If we observe lots of data, then the c term in the numerator and the $l+c$ term in the denominator dominate the prior
Conjugate Priors

- The conjugate prior that is of most relevance to parameter estimation is the Multinomial-Dirichlet
- Recall that a Dirichlet distribution is a generalization of a Beta distribution
- And a Multinomial distribution is a generalization of a Binomial distribution
- If a node in a Bayesian network can take 2 values, the analysis is just like the Beta-Binomial example in previous slides
- If it takes more than 2 values, then you have to use a Multinomial-Dirichlet

\[
f(x_1, ..., x_k \mid n, p_1, ..., p_k) = \frac{n!}{x_1! x_2! \cdots x_k!} p_1^{x_1} p_2^{x_2} \cdots p_k^{x_k}
\]

for \(\Sigma x_i = n, p_i \in [0,1], \Sigma p_i = 1 \)

Multinomial

Dirichlet

\[
f(p_1, ..., p_k \mid \alpha_1, ..., \alpha_k) = \frac{\Gamma(\alpha_1 + \cdots + \alpha_k)}{\Gamma(\alpha_1) \cdots \Gamma(\alpha_k)} p_1^{\alpha_1 - 1} \cdots p_k^{\alpha_k - 1}
\]

for \(p_i \geq 0, \Sigma p_i = 1 \)

Note: The parameters \(p_1, ..., p_k \) from the multinomial are now the random variables in the Dirichlet prior
Conjugate Priors

<table>
<thead>
<tr>
<th>Likelihood</th>
<th>Conjugate Prior</th>
<th>Posterior</th>
</tr>
</thead>
<tbody>
<tr>
<td>Binomial((x \mid n, p))</td>
<td>Beta((\alpha, \beta))</td>
<td>Beta((x+\alpha, n-x+\beta))</td>
</tr>
<tr>
<td>Multinomial((x_1, \ldots, x_k \mid n, p_1, \ldots, p_k))</td>
<td>Dirichlet((p_1, \ldots, p_k \mid \alpha_1, \ldots, \alpha_k))</td>
<td>Dirichlet((x_1+\alpha_1, \ldots, x_k+\alpha_k))</td>
</tr>
</tbody>
</table>

For Beta-Binomial posterior:

\[
E[p] = \frac{x + \alpha}{n + \alpha + \beta}
\]

For Dirichlet-Multinomial posterior:

\[
E[p_i] = \frac{x_i + \alpha_i}{n + \sum_j \alpha_j}
\]

Suppose you were asked to estimate \(P(\text{Price} = \text{Low} \mid \text{Type} = \text{Sedan}, \text{Color} = \text{Silver})\).

Notice that this distribution is a multinomial distribution with \(n = 2\) (because there are 2 records with Color=Silver, Type=Sedan) and \(p_{\text{low}}, p_{\text{medium}}, p_{\text{high}}\) corresponding to when Price is low, medium, and high.

Now suppose I tell you to use a Dirichlet prior where all the \(\alpha_i\) are 1.

Estimate \(P(\text{Price} = \text{Low} \mid \text{Color} = \text{Silver}, \text{Type} = \text{Sedan})\):

\[
\frac{\#(\text{Color} = \text{Silver AND Type} = \text{Sedan AND Price} = \text{Low}) + 1}{\#(\text{Color} = \text{Silver AND Type} = \text{Sedan}) + 3}
\]

\[
= \frac{2 + 1}{2 + 3} = \frac{3}{5}
\]