Overview of Methods

1. Constraint-based structure learning
 – Based on tests for conditional independencies in data

2. Score-based structure learning
 – Optimization problem: find structure that optimizes a score (typically using heuristic search)

3. Bayesian model averaging approaches
 – Generates an ensemble of possible structures
 – Can be done efficiently for special cases
Constraint-Based Approaches

• Based on variants of algorithms for building I-maps and perfect maps
• Need some way to answer independence queries eg. \((X \perp Y | Z)\)

Build-Minimal-I-Map
To find a minimal I-map for a distribution \(P\):
• Pick a variable ordering
• For each variable \(X_i\) in the ordering:
 • Find some minimal subset \(U\) of \(\{X_1, ..., X_{i-1}\}\) to be \(X_i\)'s parents in \(\mathcal{G}\) such that
 \(\{X_i \perp \{X_1, ..., X_{i-1}\} - U | U\}\)
Constraint-Based Approaches

Recall this algorithm from Section 3.4.1

Build-Minimal-I-Map
To find a minimal I-map for a distribution P:
• Pick a variable ordering
• For each variable X_i in the ordering:
 • Find some minimal subset U of $\{X_1, \ldots, X_{i-1}\}$ to be X_i's parents in \mathcal{G} such that
 \[\{X_i \perp \{X_1, \ldots, X_{i-1}\} \mid U \} \]

Problem #1: Final structure is sensitive to the ordering
Problem #2: Conditional independence query involves a large number of variables – hard to estimate from empirical data
Problem #3: Lots of subsets to search over

Constraint-Based Approaches

• Won’t learn a single network
• Instead, we will learn an I-equivalence class

Two graph structures κ_1 and κ_2 are I-equivalent if $I(\kappa_1) = I(\kappa_2)$
Constraint-Based Approaches

- Will use a class Partially Directed Acyclic Graph (PDAG) to represent this class
- A PDAG is an acyclic graph with both directed and undirected edges e.g.

\[\begin{align*}
X & \rightarrow Y \\
Y & \rightarrow Z
\end{align*} \]

Goal: reconstruct the network that best matches the domain without a prespecified variable ordering and using a polynomial number of independence tests that involve a bounded number of variables

Constraint-Based Approaches

Assumptions:
- Each node has \(\leq d \) parents
- Independence procedure can answer any query involving up to \(2d + 2 \) variables
- The underlying distribution \(P^* \) is faithful to \(G^* \)

Recall that faithfulness means that any independence in the distribution \(P^* \) is reflected in the \(d \)-separation properties of the graph \(G^* \).
Learning PDAGs

• Goal: learn a DAG \mathcal{g}^* that is a perfect map (P-map) of distribution P
• \mathcal{g}^* is not unique: a distribution can have many P-maps, but they are all I-equivalent
e.g. $(X \perp Y \mid Z)$

\[X \rightarrow Z \rightarrow Y\]
\[X \leftarrow Z \rightarrow Y\]
\[X \rightarrow Z \leftarrow Y\]

Can’t learn a single network

Learning PDAGs

• Want to return the entire equivalence class with some compact representation
• Theorem 3.8: two DAGs are I-equivalent if they share the same undirected skeleton and the same set of immoralities
• Can identify I-equivalence class by:
 1. Identify the undirected skeleton
 2. Identify independence properties
Learning PDAGs

Identifying the undirected skeleton

- **Intuition**: If X and Y are adjacent in G^* then we cannot make them conditionally independent given some set of variables U

- Suppose you do find U such that $P \models (X \perp Y | U)$. We call set U a **witness** of their independence

- If G^* has bounded in-degree d, then we do not need to consider witness sets larger than d

Procedure Build-PMap-Skeleton

\[
\begin{align*}
\mathcal{X} &= \{X_1, ..., X_n\}, \quad \text{// Set of random variables} \\
P, \quad \text{// Distribution over } \mathcal{X} \\
d \quad \text{// Bound on witness set} \\
\end{align*}
\]

Let \mathcal{H} be the complete undirected graph over \mathcal{X}

for X_i, X_j in \mathcal{X}

\[
U_{X_i,X_j} \leftarrow \emptyset
\]

for $U \in \text{Witnesses}(X_i, X_j, \mathcal{H}, d)$

\[
\text{// Consider } U \text{ as a witness set for } X_i, X_j
\]

if $P \models (X_i \perp X_j | U)$ then

\[
U_{X_i,X_j} \leftarrow U
\]

Remove X_i, X_j from \mathcal{H}

break

return $(\mathcal{H}, U_{X_i,X_j}; i, j \in \{1, ..., n\})$
Learning PDAGs

Procedure Build-PMap-Skeleton (
\[X = \{X_1, \ldots, X_n\}; \] // Set of random variables
\[P, \] // Distribution over \(X \)
\[d \] // Bound on witness set
)

Let \(\mathcal{H} \) be the complete undirected graph over \(X \) for \(X_i, X_j \in X \)
\[U_{X_i, X_j} \leftarrow \emptyset \] for \(U \in \text{Witnesses}(X_i, X_j, \mathcal{H}, d) \)
 // Consider \(U \) as a witness set for \(X_i, X_j \)
 if \(P \models (X_i \perp X_j | U) \) then
 \[U_{X_i, X_j} \leftarrow U \]
 Remove \(X_i - X_j \) from \(\mathcal{H} \)
 break

return \((\mathcal{H}, \{U_{X_i, X_j}; i, j \in \{1, \ldots, n\}) \)

Several speedups possible here e.g. restrict size of \(U \) to be \(d \)

Learning PDAGs

• **Build-PMap-Skeleton** has complexity \(O(n^{d+2}) \):
 – Considers \(O(n^2) \) pairs
 – For each pair, we perform \(O((n - 2)^d) \) independence tests

• Note: **Build-PMap-Skeleton** may fail if \(P \) does not have a P-map
Learning PDAGs

Identifying Immoralities
• We have the undirected skeleton
• Need to determine edge directions
• Use immoralities to inform us about edge directions

Learning PDAGs

• Consider potential immoralities in the skeleton eg. $X \rightarrow Z \rightarrow Y$
• A potential immorality is an immorality if and only if Z is not in any witness set U for X and Y.

![Diagram](diagram.png)

• If $X \rightarrow Z \rightarrow Y$ is not an immorality, then Z must be in every witness set U.
Learning PDAGs

Procedure Mark-Immoralities (
\(X = \{X_1, \ldots, X_n\} \),
\(S \) \, // Skeleton
\(\{U_{X_i,X_j}; 1 \leq i,j \leq n\} \) \, // Witnesses found by Build-PMap-Skeleton
)
\(\mathcal{K} \leftarrow S \)
for \(X_i, X_j, X_k \) such that \(X_i - X_j - X_k \in S \) and \(X_i - X_k \notin S \)
\// \(X_i - X_j - X_k \) is a potential immorality
if \(X_j \notin U_{X_i,X_k} \) then
Add the orientations \(X_i \rightarrow X_j \) and \(X_j \leftarrow X_k \) to \(\mathcal{K} \)
return \(\mathcal{K} \)

Note: \(\mathcal{K} \) has directed and undirected edges (called a chain graph or partially directed acyclic graph)

Learning PDAGs

Let \(\mathcal{G} \) be a DAG. A chain graph \(\mathcal{K} \) is a class PDAG of the equivalence class of \(\mathcal{G} \) if it shares the same skeleton as \(\mathcal{G} \), and contains a directed edge \(X \rightarrow Y \) if and only if all \(\mathcal{G}' \) that are I-equivalent to \(\mathcal{G} \) contain the edge \(X \rightarrow Y \)

Represented by chain graph:

\[
X \rightarrow Z \rightarrow Y
\]

Note: this has no directed edges because not all edge orientations are in the equivalence class eg. \(X \rightarrow Z \leftarrow Y \)
Learning PDAGs

Rules for orienting edges in a PDAG

Rule 1:

Rule 2:

Rule 3:

Learning PDAGs

Procedure Build-PDAG (
\[X = \{X_1, \ldots, X_n\} \] // A specification of the random variables
\[P \] // Distribution of interest
)

\[S, \{U_{X_i,X_j}\} \leftarrow \text{Build-PMap-Skeleton}(X, P) \]
\[K \leftarrow \text{Find-Immoralities}(X, S, \{U_{X_i,X_j}\}) \]

while not converged

Find a subgraph in \(K \) matching the left-hand side of a rule (Rules 1-3)
Replace the subgraph with the right-hand side of the rule

return \(K \)
Independence Tests

How to determine independence?
• Hypothesis tests eg. with two variables X and Y
• Null Hypothesis H_0: X and Y are independent
• Alternate Hypothesis H_1: X and Y are not independent

Independence Tests

• Accept / Reject the null hypothesis
• False rejection: wrongly rejecting the null hypothesis when it is correct
Independence Tests

Measuring deviance from the null hypothesis
eg.

• Chi-squared statistic

\[d_{X^2}(D) = \sum_{x,y} \frac{(M[x,y] - M \cdot \hat{p}(x) \cdot \hat{p}(y))^2}{M \cdot \hat{p}(x) \cdot \hat{p}(y)} \]

• Mutual Information

\[d_I(D) = I_{p,D}(X; Y) = \frac{1}{M} \sum_{x,y} M[x,y] \log \frac{M[x,y]}{M[x]M[y]} \]

Independence Tests

Rule for accepting/rejecting the null hypothesis

\[R_{d,t}(D) = \begin{cases}
\text{Accept if } d(D) \leq t \\
\text{Reject if } d(D) > t
\end{cases} \]

Threshold \(t \) determines the false rejection rate.

\[p - \text{value}(t) = P(D: d(D) > t|H_0,M) \]

Typically, threshold \(t \) set to give p-value \(\leq 0.05 \)
Summary

Main problem with constraint-based approaches: independence tests aren’t perfect
• Threshold-dependent results
• Multiple hypothesis testing: number of incorrect results can grow large

Leads to errors in resulting PDAG