Undirected Graphical Models 2: Independencies

Independencies (Bayesian Networks)

Use d-separation to read off independencies in a Bayesian network

Takes a bit of effort!
Independencies (Markov networks)

Use separation to determine independencies (really easy!)

\[X \perp Y \mid Z \]

\[X \quad Z \quad Y \]

Independencies

Formally: let \mathcal{H} be a Markov network structure, and let $X_1 - \ldots - X_k$ be a path in \mathcal{H}. Let $Z \subseteq \mathcal{X}$ be a set of observed variables. The path $X_1 - \ldots - X_k$ is active given Z if none of the X_i's in $i=1, \ldots, k$, is in Z.

\[X_1 \quad X_2 \quad X_3 \]

Path not active if X_2 is in Z and it separates X_1 and X_3
Independencies

A set of nodes Z separates X and Y in \mathcal{H}, denoted $\text{sep}_{\mathcal{H}}(X; Y | Z)$, if there is no active path between any node $X \in X$ and $Y \in Y$ given Z.

We define the global independencies associated with \mathcal{H} to be:

$$I(\mathcal{H}) = \{(X \perp Y | Z) : \text{sep}_{\mathcal{H}}(X; Y | Z)\}$$

Separation is monotonic in Z ie. If $\text{sep}_{\mathcal{H}}(X; Y | Z)$ then $\text{sep}_{\mathcal{H}}(X; Y | Z')$ for any $Z' \supset Z$.

Example:

$$(X_1 \perp X_4 | X_2)$$

Can’t encode non-monotonic independence relations with separation in a Markov network (more on this later)
Independencies

Properties we want separation to have:
1) **Soundness**: i.e. Separation in Graph \mathcal{H}
 \iff Independence in distribution P
2) **Completeness**: i.e. Separation in Graph \mathcal{H} finds all independences in distribution P

Do these properties hold?

Soundness

Soundness: Separation in Graph $\mathcal{H} \iff$ Independence in distribution P

- \Rightarrow direction: true. See Theorem 4.1
- \Leftarrow direction: true*

*true only for positive distributions (i.e. probability of all events > 0)

Hammersley-Clifford Theorem: Let P be a positive distribution over \mathcal{X}, and \mathcal{H} a Markov network graph over \mathcal{X}. If \mathcal{H} is an I-map for P, then P is a Gibbs distribution that factorizes over \mathcal{H}.
Independencies

Properties we want separation to have:

1) **Soundness**: i.e. Separation in Graph \mathcal{H}
 ⇔ Independence in distribution P^*

2) **Completeness**: i.e. Separation in Graph \mathcal{H}
 finds all independences in distribution P

Completeness

- **Strong version (not true)**: every pair of nodes X and Y that are not separated in \mathcal{H} are dependent in every distribution which factorizes over \mathcal{H}
- **Weaker version needed**: If X and Y are not separated given Z in \mathcal{H}, then X and Y are dependent given Z in some distribution P that factorizes over \mathcal{H}.
Independencies

Properties we want separation to have:

1) **Soundness**: i.e. Separation in Graph \mathcal{H} \iff Independence in distribution P^*

 *See fine print

2) **Completeness**: i.e. Separation in Graph \mathcal{H} finds all independences in distribution P^*

 *See fine print

Independencies

We had two definitions of independencies in Bayesian networks:

1. **Global independencies**
 - D-separation

2. **Local independencies**:
 - $(X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i))$
Independencies

We can do the same thing with Markov Networks:

1. Global independencies: Separation
 \[I(\mathcal{H}) \]

2. “Local” independencies:
 a) Pairwise independencies \[I_p(\mathcal{H}) \]
 b) Local independencies (Markov Blanket)
 \[I_l(\mathcal{H}) \]

Pairwise Independencies

Intuitively: when two variables are not directly connected, we can make them conditionally independent through other mediating variables

Let \(\mathcal{H} \) be a Markov network. We define the pairwise independencies associated with \(\mathcal{H} \) to be:

\[
I_p(\mathcal{H}) = \{(X \perp Y | X - \{X,Y\}); X - Y \notin \mathcal{H}\}
\]
Local Independencies

Markov Blanket
• Intuitively: block all influences on a node by conditioning on its immediate neighbors

Grey nodes are the Markov blanket

Local Independencies

Markov Blanket
• Formally: for a given graph \mathcal{H}, we define the Markov blanket of X in \mathcal{H}, denoted $MB_{\mathcal{H}}(X)$, to be the neighbors of X in \mathcal{H}. We define the local independencies associated with \mathcal{H} to be:

$$I_\mathcal{L}(\mathcal{H}) = \{(X \perp \mathcal{X} - \{X\} \mid MB_{\mathcal{H}}(X)) : X \in \mathcal{X}\}.$$
Independencies

• For general distributions: $I_p(H)$ weaker than $I_i(H)$ which is weaker than $I(H)$
• For positive distributions: All three are equivalent