Undirected Graphical Models 2: Independencies

Independencies (Bayesian Networks)

Use d-separation to read off independencies in a Bayesian network

Takes a bit of effort!
Independencies (Markov networks)

Use separation to determine independencies (really easy!)

\[X \perp Y \mid Z \]

Independencies

Formally: let \(\mathcal{H} \) be a Markov network structure, and let \(X_1 \ldots X_k \) be a path in \(\mathcal{H} \). Let \(Z \subseteq \mathcal{X} \) be a set of observed variables. The path \(X_1 \ldots X_k \) is active given \(Z \) if none of the \(X_i \)'s in \(i=1, \ldots, k \), is in \(Z \).

Path not active if \(X_2 \) is in \(Z \) and it separates \(X_1 \) and \(X_3 \)
Independencies

A set of nodes Z separates X and Y in \mathcal{H}, denoted $\text{sep}_H(X; Y | Z)$, if there is no active path between any node $X \in X$ and $Y \in Y$ given Z.

We define the global independencies associated with \mathcal{H} to be:

$I(\mathcal{H}) = \{(X \perp Y | Z) : \text{sep}_H(X; Y | Z)\}$

Independencies

Separation is monotonic in Z ie.
If $\text{sep}_H(X; Y | Z)$ then $\text{sep}_H(X; Y | Z')$ for any $Z' \supset Z$.

Example:

$(X_1 \perp X_4 | X_2)$

$(X_1 \perp X_4 | [X_2, X_3])$

Can’t encode non-monotonic independence relations with separation in a Markov network (more on this later)
Independencies

Properties we want separation to have:

1) **Soundness**: i.e. Separation in Graph \mathcal{H}
 \iff Independence in distribution P

2) **Completeness**: i.e. Separation in Graph
 \mathcal{H} finds all independences in distribution P

Do these properties hold?

Soundness

Soundness: Separation in Graph \mathcal{H} \iff
Independence in distribution P

- \Rightarrow direction: true. See Theorem 4.1
- \Leftarrow direction: true*

*true only for positive distributions (i.e. probability of all events > 0)

Hammersley-Clifford Theorem: Let P be a positive distribution over \mathcal{X}, and \mathcal{H} a Markov network graph over \mathcal{X}. If \mathcal{H} is an I-map for P, then P is a Gibbs distribution that factorizes over \mathcal{H}.
Independencies

Properties we want separation to have:

1) **Soundness**: i.e. Separation in Graph \mathcal{H}

 \iff Independence in distribution P^*

2) **Completeness**: i.e. Separation in Graph \mathcal{H} finds all independences in distribution P

Completeness

- **Strong version (not true)**: every pair of nodes X and Y that are not separated in \mathcal{H} are dependent in every distribution which factorizes over \mathcal{H}
- **Weaker version needed**: If X and Y are not separated given Z in \mathcal{H}, then X and Y are dependent given Z in some distribution P that factorizes over \mathcal{H}.
Independencies

Properties we want separation to have:

1) **Soundness**: i.e. Separation in Graph H ⇔ Independence in distribution P^*

 *See fine print

2) **Completeness**: i.e. Separation in Graph H finds all independences in distribution P^*

 *See fine print

We had two definitions of independencies in Bayesian networks:

1. **Global independencies**
 - D-separation

2. **Local independencies**:
 - $(X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i))$
Independencies

We can do the same thing with Markov Networks:

1. **Global independencies**: Separation \([I(\mathcal{H})]\)

2. “Local” independencies:
 a) Pairwise independencies \([I_p(\mathcal{H})]\)
 b) Local independencies (Markov Blanket) \([I_l(\mathcal{H})]\)

Pairwise Independencies

Intuitively: when two variables are not directly connected, we can make them conditionally independent through other mediating variables

Let \(\mathcal{H}\) be a Markov network. We define the **pairwise independencies** associated with \(\mathcal{H}\) to be:

\[
I_p(\mathcal{H}) = \{(X \perp Y \mid X - \{X, Y\}); \ X - Y \notin \mathcal{H}\}
\]
Local Independencies

Markov Blanket

• Intuitively: block all influences on a node by conditioning on its immediate neighbors

Grey nodes are the Markov blanket

• Formally: for a given graph \mathcal{H}, we define the Markov blanket of X in \mathcal{H}, denoted $MB_{\mathcal{H}}(X)$, to be the neighbors of X in \mathcal{H}. We define the local independencies associated with \mathcal{H} to be:

$$I_{\mathcal{H}}(\mathcal{X}) = \{(X \perp \mathcal{X} - \{X\} | MB_{\mathcal{H}}(X)) : X \in \mathcal{X}\}.$$
Independencies

- For general distributions: $I_p(\mathcal{H})$ weaker than $I_p(\mathcal{H})$ which is weaker than $I(\mathcal{H})$
- For positive distributions: All three are equivalent