Undirected Graphical Models 2: Independencies

Independencies (Bayesian Networks)
Use d-separation to read off independencies in a Bayesian network

Independencies (Markov networks)
Use separation to determine independencies (really easy!)

Independencies
Formally: let \mathcal{H} be a Markov network structure, and let $X_1 - \ldots - X_k$ be a path in \mathcal{H}. Let $Z \subseteq \mathcal{X}$ be a set of observed variables. The path $X_1 - \ldots - X_k$ is active given Z if none of the X_i's in $i=1, \ldots, k$, is in Z.

Path not active if X_2 is in Z and it separates X_1 and X_3
Independencies

A set of nodes Z separates X and Y in H, denoted $\text{sep}_H(X; Y | Z)$, if there is no active path between any node $X \in X$ and $Y \in Y$ given Z.

We define the global independencies associated with H to be:

$I(H) = \{(X \perp Y | Z) : \text{sep}_H(X; Y | Z)\}$

Independencies

Separation is monotonic in Z. I.e., if $\text{sep}_H(X; Y | Z)$ then $\text{sep}_H(X; Y | Z')$ for any $Z' \supseteq Z$.

Example:

$(X_1 \perp X_4 | X_2)$

$(X_1 \perp X_4 || (X_2, X_3))$

Can’t encode non-monotonic independence relations with separation in a Markov network (more on this later)

Independencies

Properties we want separation to have:

1) **Soundness**: i.e. Separation in Graph H \iff Independence in distribution P

2) **Completeness**: i.e. Separation in Graph H finds all independences in distribution P

Do these properties hold?

Soundness

Soundness: Separation in Graph H \iff Independence in distribution P

- \Rightarrow direction: true. See Theorem 4.1
- \Leftarrow direction: true*

*true only for positive distributions (i.e. probability of all events > 0)

Hammersley-Clifford Theorem: Let P be a positive distribution over \mathcal{X}, and H a Markov network graph over \mathcal{X}. If H is an I-map for P, then P is a Gibbs distribution that factorizes over H.
Independencies

Properties we want separation to have:
1) **Soundness**: i.e. Separation in Graph \mathcal{H} ⇔ Independence in distribution P^*

2) **Completeness**: i.e. Separation in Graph \mathcal{H} finds all independences in distribution P

*See fine print

Completeness

- **Strong version (not true)**: every pair of nodes X and Y that are not separated in \mathcal{H} are dependent in every distribution which factorizes over \mathcal{H}
- **Weaker version needed**: If X and Y are not separated given Z in \mathcal{H}, then X and Y are dependent given Z in some distribution P that factorizes over \mathcal{H}.

Independencies

We had two definitions of independencies in Bayesian networks:

1. **Global independencies**
 D-separation

2. **Local independencies**:
 $$(X_i \perp \text{NonDescendants}(X_i) \mid \text{Parents}(X_i))$$

*See fine print
Independencies

We can do the same thing with Markov Networks:

1. Global independencies: Separation \([I(\mathcal{H})]\)
2. “Local” independencies:
 a) Pairwise independencies \([I_p(\mathcal{H})]\)
 b) Local independencies (Markov Blanket) \([I_l(\mathcal{H})]\)

Pairwise Independencies

Intuitively: when two variables are not directly connected, we can make them conditionally independent through other mediating variables

Let \(\mathcal{H}\) be a Markov network. We define the pairwise independencies associated with \(\mathcal{H}\) to be:

\[I_p(\mathcal{H}) = \{ (X \perp Y \mid \mathcal{X} - \{X,Y\}) : X \rightarrow Y \notin \mathcal{H} \} \]

Local Independencies

Markov Blanket

• Intuitively: block all influences on a node by conditioning on its immediate neighbors

Formally: for a given graph \(\mathcal{H}\), we define the Markov blanket of \(X\) in \(\mathcal{H}\), denoted \(MB_{\mathcal{H}}(X)\), to be the neighbors of \(X\) in \(\mathcal{H}\). We define the local independencies associated with \(\mathcal{H}\) to be:

\[I_l(\mathcal{H}) = \{ (X \perp \mathcal{X} - \{X\} - MB_{\mathcal{H}}(X) \mid MB_{\mathcal{H}}(X)) : X \in \mathcal{X} \} \]
Independencies

- For general distributions: $I_p(H)$ weaker than $I_l(H)$ which is weaker than $I(H)$
- For positive distributions: All three are equivalent