1. Suppose that we wish to design an FIR lowpass filter with the following specifications:

\[0.92 < H(e^{j\omega}) < 1.02 \quad 0 \leq |\omega| \leq 0.63\pi, \]

\[|H(e^{j\omega})| < 0.1 \quad 0.65\pi \leq |\omega| \leq \pi \]

by applying a window to the impulse response \(h_0[n] \) for the ideal discrete-time lowpass filter with cutoff \(\omega_c = 0.64\pi \).

a) For each the following windows: Hamming, Hanning, and Bartlett modify the MATLAB code 'HW8-prob1_code.m' to determine the minimum value of \(M \) that satisfies the specification.

b) To support your answer, for each window plot the frequency response of the filter you generated in part (a). Show that with \(M-1 \) the constraints are not satisfied.

2. An ideal discrete-time Hilbert transformer is a system that introduces -90° (-\(\pi/2 \) radians) of phase shift for 0 and +90° (\(\pi/2 \) radians) of phase shift for \(-\pi < \omega < 0\). The magnitude of the frequency response is constant (unity) for \(-\pi < \omega < 0\) and for \(0 < \omega < \pi\). Such systems are also called ideal 90° phase shifters.

\[H(e^{j\omega}) = \begin{cases} -j, & 0 < \omega < \pi, \\ j, & -\pi < \omega < 0. \end{cases} \]

a) Plot the phase response of this system for \(-\pi < \omega < \pi\)

b) Suppose that we wish to use the window method to design a linear-phase approximation to the ideal Hilbert transformer. Use \(H(e^{j\omega}) \) given above, to determine the ideal impulse response \(h[n] \) if the FIR system is to be such that \(h[n]=0 \) for \(n < 0 \) and \(n > M \).

c) What type(s) of FIR linear-phase systems (I, II, III, or IV) can be used to approximate the ideal Hilbert transformer in part (a)?

3. Consider designing a discrete-time filter with system function \(H(z) \) from a continuous-time filter with rational system function \(H_c(s) \) by the transformation.

\[H(z) = H_c\left(s\right)|_{s=\frac{\beta}{1-\alpha(z^{-\alpha})}} \]

Where \(\alpha \) is a nonzero integer and \(\beta \) is real.

a) If \(\alpha > 0 \), for what values of \(\beta \) does a stable, causal continuous-time filter with rational \(H_c(s) \) always lead to a stable, causal discrete-time filter with rational \(H(z) \)?

b) If \(\alpha < 0 \), for what values of \(\beta \) does a stable, causal continuous-time filter with rational \(H_c(s) \) always lead to a stable, causal discrete-time filter with rational \(H(z) \)?
4. Download the two attached files. A piece of music is added with a high-pass noise. Please design a low-pass filter to eliminate this noise. The specification of that high-pass noise is:

\[
\begin{align*}
 f_{\text{stop}} &= 10 \text{ kHz} \\
 f_{\text{pass}} &= 12 \text{ kHz}
\end{align*}
\]

The original music has a sample rate equals to \(f_{\text{sample}} = 44.1 \text{ kHz} \).

You can use command ‘sound’ in MATLAB to play the music. \([\text{sound}(y, f_s)\) sends audio signal \(y \) to the speaker at sample rate \(f_s \)].

Choose one of the following filter types to design the filter in MATLAB:

- Chebyshev type I
- Chebyshev type II
- Butterworth

a) Fill out the attached matlab code with calculated design variables and include generated plots.

b) Bonus: Solve again using a second filter type.