

CS 161 Lab #1 – Off to a Good Start

To get credit for this lab, you must be checked off by a TA by the end of lab. For non-
zero labs, you can earn a maximum of 3 points (of 10) for lab work completed outside of
lab time, but you must finish this lab before the next lab begins. For any exceptions,
contact your lab TAs and Dr. Wagstaff in advance.

(2 pts) A. Get Set Up
These exercises need to be completed individually by each student. This is to ensure that
everyone gets setup properly. You can certainly ask your neighbor, friend, or TA questions! ☺

1. Log into TEACH to see if you have an ENGR account. If you do not have an ENGR

account, then you will need to create one by clicking on the link at the bottom of the login
page that says: Create a new account (Enable your Engineering resources).

2. Log on to the ENGR server through a secure shell. Depending on your operating
system, jump to the instructions for Windows or MacOS/Linux.

Windows Users:
Download a free Secure Shell (ssh). We will use the MobaXterm this quarter.
MobaXterm: http://mobaxterm.mobatek.net/download-home-edition.html (Use Installer

Edition, unless you are not using your own computer, and extract files in zip to not get a

bunch of messages about accessing files.)

Once you have installed MobaXterm, open MobaXterm. Go to Sessions -> New Session,
and click on the SSH icon.

Enter access.engr.oregonstate.edu as the remote host, and click on the Specify

Username checkbox to enter your username in the appropriate field.

Click on the Bookmark settings tab to save your session with a specific name, e.g. ENGR.

Lastly, click OK.

https://teach.engr.oregonstate.edu/teach.php?type=want_auth
http://mobaxterm.mobatek.net/download-home-edition.html

The ENGR session you just created will connect, and you will be asked to enter your
password at the prompt. **Note: You will not see anything as you type your password. This
is a security feature in Linux.

You will need an authentication for DUO Two-factor login. Please read this information and

sign up here. After your first login, you can bypass the need for DUO by setting up SSH

Keys using these instructions.

After a successful logon, you should see a prompt that looks something like this:

flip1 ~ 1$

MacOS or Linux Users:

You have a terminal with ssh built into the OS. Open the terminal by going to the Finder and

selecting Go -> Utilities -> Terminal (on a Linux system, you might be able to click on the

desktop and select Terminal). At the prompt, type ssh

<onid>@access.engr.oregonstate.edu .

https://is.oregonstate.edu/duo/students
https://is.oregonstate.edu/duo
https://it.engineering.oregonstate.edu/ssh-keygen

The ENGR session you just created will connect, and you will be asked to enter your
password at the prompt. **Note: You will not see anything as you type your password. This
is a security feature in Linux.

You will need an authentication for DUO Two-factor login. Please read this information and

sign up here. After your first login, you can bypass the need for DUO by setting up SSH

Keys using these instructions.

After a successful logon, you should see a prompt that looks something like this:

flip1 ~ 1$

If you get “^?” when you try to delete/backspace:

• Go to your Terminal Preferences under the Advanced tab and enable "Delete Sends
Ctrl-H".

(1 pt) B. Practice Linux Commands

• Listing the contents of a directory/folder.
At the prompt, type the following commands to look at your files and directories in your
home directory. Note the differences on a piece of paper.
$ ls

$ ls -a

$ ls -l

$ ls -al

**Note: You should notice a . and .. directory listed. The . directory refers to your current

directory, and the .. directory refers to one directory above your current directory. The ~

refers to your home directory.

• Instructions for Unix/Linux commands.
UNIX/Linux provides you manual pages for the commands. You are encouraged to read
these manual pages when you have questions about a specific command or want more
details about the options to use with a command. Use the space bar to scroll forward
through the manual pages (one page at a time), press b to scroll backwards (one page at a

https://is.oregonstate.edu/duo/students
https://is.oregonstate.edu/duo
https://it.engineering.oregonstate.edu/ssh-keygen

time), and press q to quit the manual page. You can also use the up and down arrow keys
to scroll forward and backward one line at a time.
$ man ls

Most linux commands also allow you to specify “--help” to get information about usage.

$ ls --help

• Find Unix/Linux commands.
In addition, if you are not sure what a command is in UNIX/Linux, then you can find the
appropriate command using apropos and a keyword. For example, to look up UNIX/Linux
commands for editing a file, working with a directory, etc.
$ apropos editor

$ apropos directory

You may have noticed that you get more text than what can fit in your terminal window. To
view data a page at a time in your terminal, you can “pipe” the command contents through
another command called less. This will allow you to scroll through the pages using space

bar, b, and q just as you did with the manual pages.
$ apropos directory | less

• Directories/Folders.
Make a directory in your home directory named labs, and change into the labs directory
(note what happens to your prompt).
$ mkdir labs

$ cd labs

Create a directory in your labs directory named lab1, and change into the lab1 directory.
$ mkdir lab1

$ cd lab1

Find out your present working directory.
$ pwd

You can go back/up a directory by using two periods/dots together, and you can go back to
your home directory by using the tilde, ~. Use the pwd to confirm you are back in your home
directory.
$ cd ..

$ pwd

$ cd ~

$ pwd

Now, change into the labs/lab1 directory by using your up arrow key to take you through
the history of commands you’ve used in the past. You should see the cd labs and cd

lab1 command you typed earlier. You can also change directly into the lab1 directory by

using cd labs/lab1.

A good rule of thumb is to use pwd at any time to determine where you are, in case you

forget. Also, use ls as often as you need to see a listing of your current directory.

To receive credit for this section, create a Word or text document on your computer to submit at

the end of lab. Name this file lab1_written.doc (or lab1_written.txt). Put your name, lab

section, lab number (1), and date at the top of the file and create sections for your answers to

parts B., E., and F.

Execute the following command to see a visual depiction of all of your files:

$ tree ~

Copy and paste the output from this command into your Word/text file in section B.

(1 pt) C. Write a Program

Use the vim editor to create a C++ file containing your first C++ program.
$ vim lab1_worst_advice.cpp

Below is an overview of vi/vim and a set of useful commands. **Remember you can man vim

to see the manual pages for vi/vim**. In addition, I have provided a useful vim tutorial under

Useful Links on our class website. One of the default editors provided with the UNIX

operating system is called vi (visual editor) or vim (visual editor improved). [Alternate editors for

UNIX include emacs and pico.]

The UNIX vi editor is a full screen editor and has two modes of operation:

• Command mode commands which cause action to be taken on the file, and

• Insert mode in which entered text is inserted into the file.

You start in Command mode until you press ‘i’ to change to Insert mode. In Insert mode, every

character typed is added to the text in the file; pressing the <Esc> (Escape) key turns off Insert

mode and switches to Command mode.

Basic Vim Commands (in command mode):

:w<Return> - write out modified file to file named in original invocation

:wq<Return> - quit vi, writing out modified file to file named in original invocation

:q<Return> - quit (or exit) vi

:q!<Return> - quit vi without saving the latest changes

:0<Return> - move cursor to first line in file

:n<Return> - move cursor to line n

:$<Return> - move cursor to last line in file

:set number<Return> - insert line numbers into vi file

/search<Return> - find first occurrence of search from the location of cursor in the

downward direction

?search<Return> – find first occurrence of search from the location of cursor in the upward

direction

n – move cursor to next occurrence of last search (in direction of search)

j [or down-arrow] - move cursor down one line

k [or up-arrow] move cursor up one line

h [or left-arrow] move cursor left one character

l [or right-arrow] move cursor right one character

0 (zero) - move cursor to start of current line (the one with the cursor)

$ - move cursor to end of current line

^ - move cursor to the first non-whitespace character in a line

w - move cursor to beginning of next word

b - move cursor back to beginning of preceding word

u – undo whatever you last did

x – delete current character

dd – delete current line

yy – yank line and put into buffer for pasting

p – paste text in buffer to line below cursor

i – enter insert mode and enter text before the cursor

a - enter insert mode and append text after cursor

o - enter insert mode and enter text on line below cursor

<Esc> - get out of insert mode and enter command mode

Your task: Write a starting C++ program that prints out a single line that contains the worst
advice you can think of for a college freshman. Use the style guideline on the class website
for suggestions on how to format your code:
http://classes.engr.oregonstate.edu/eecs/winter2020/cs161-020/assignments/cs161-style-guidelines.pdf

/**

** Program: lab1_worst_advice.cpp

** Author: Your Name

** Date: 01/08/2020

** Description: Print worst advice for a college freshman.

***/

#include <iostream>

int main() {

 std::cout << “Never go to office hours. Asking for help is a sign of

weakness.” << std::endl;

 return 0;

}

http://classes.engr.oregonstate.edu/eecs/winter2020/cs161-020/assignments/cs161-style-guidelines.pdf

D. Compile and Run Your Program

We have access to two C++ compilers. You can use either one. Today, try out each one and
compare the differences. If you see errors or warnings, compare your program to the above
example to figure out what needs to be fixed. Ask for help from a TA or a friend or at any time!

After successfully compiling, execute the compiled program.

GNU compiler
$ g++ lab1_worst_advice.cpp -o lab1_worst_advice

$./lab1_worst_advice

Clang compiler
$ clang++ lab1_worst_advice.cpp -o lab1_worst_advice

$./lab1_worst_advice

(3 pts) E. Experiment: Make mistakes and see what happens!

For each experiment, make a change to the .cpp file, recompile (g++ and clang++), and

possibly execute the program (./lab1_worst_advice) if there are no errors from the

compilation. Remember, you cannot fail an experiment!

Experiment 1: What happens when you forget the semicolon at the end of the cout

statement? Be specific and note the differences between g++ and clang++ error messages.

std::cout << “Never go to office hours. Asking for help is a sign of

weakness.” << std::endl

Experiment 2: What happens when you forget to include iostream, i.e., remove #include

<iostream> from the program? Be specific and note the differences between g++ and

clang++ error messages.

Experiment 3: What happens when you put your advice on a new line? Be specific and note

the differences between g++ and clang++ error messages.

std::cout <<

“Never go to office hours. Asking for help is a sign of weakness.”

<< std::endl;

Experiment 4: What happens when you put part of your advice on a new line? Be specific and

note the differences between g++ and clang++ error messages.

std::cout << “Never go to office hours.

Asking for help is a sign of weakness.” << std::endl;

Challenge 1: How would you put the first word of your advice on one line and the rest of the

advice on another line in your program with only one use of std::cout? Write the new

version of this line of code to achieve it.

Challenge 2: How would you put the first word of your advice on one line and the rest of the

advice on another line in the output to the screen during execution with only one use of

std::cout? Write the new version of this line of code to achieve it.

Before moving on, fix any errors you added, so that the .cpp file compiles and runs

correctly.

(1 pt) F. Develop a Plan for Assignment 1

Look over assignment #1 on the website. Think about how you will proceed, based on your

understanding of the problem and the knowledge you have at this time (feel free to consult Rao

Lesson 3). Record your answers to the following questions in your Word or text file. You may

discuss the assignment with other students, but your answers (and later, your code) should be

written by you alone.

1. How many inputs will your program request from the user?

2. How will you decide which data types to use for each variable?

3. Will you predict good fortunes, bad fortunes, or a mixture?

(1 pt) G. Upload Written Document (.doc or .txt) and Program (.cpp) to TEACH

There are two ways to transfer your files from ENGR to TEACH.

1. Transfer Files from ENGR to local computer

You can transfer files to your own computer, then upload them to TEACH:

Windows Users: MobaXterm already has a sftp client installed. Notice the window pane on the

left with folders and files. You can drag and drop a file to your local hard drive.

Mac OS Users:

• From the command line inside a Terminal window:

$ scp <onid>@access.engr.oregonstate.edu:<pathname> .

where <pathname> refers to the location of the file you want to transfer. For example:

$ scp <onid>@access.engr.oregonstate.edu:labs/lab1/lab1_worst_advice.cpp .

Don’t forget the final . ! That tells scp where to put the file on your local machine (. means

“current directory”).

• Using a graphical interface:

Download Cyberduck from http://oregonstate.edu/helpdocs/osu-applications/offered-apps/ftp

https://teach.engr.oregonstate.edu/teach.php
http://oregonstate.edu/helpdocs/osu-applications/offered-apps/ftp

**NOTE: You may want to put Cyberduck, MobaXterm, etc. on a flash drive to carry with you.

This will enable you to use any computer without needing your laptop all the time.

OR

2. Map Network Drive

You can map a network drive and choose the file from the mapped network drive. This allows

you to directly work off the server as if it were a disk drive on your computer. You can follow

these instructions to map a network drive for Windows or MacOS.

Windows:

http://it.engineering.oregonstate.edu/accessing-engineering-file-space-using-windows-file-

sharing

MacOS:

http://it.engineering.oregonstate.edu/accessing-engineering-file-space-using-os-x-smb-
command

If you want to use the drive off campus, then you must download the Cisco VPN Client from

OSU: http://oregonstate.edu/helpdocs/osu-applications/offered-apps/virtual-private-network-vpn

http://it.engineering.oregonstate.edu/accessing-engineering-file-space-using-windows-file-sharing
http://it.engineering.oregonstate.edu/accessing-engineering-file-space-using-windows-file-sharing
http://it.engineering.oregonstate.edu/accessing-engineering-file-space-using-os-x-smb-command
http://it.engineering.oregonstate.edu/accessing-engineering-file-space-using-os-x-smb-command
http://oregonstate.edu/helpdocs/osu-applications/offered-apps/virtual-private-network-vpn

Submit your files to TEACH

1. Connect to TEACH here: https://teach.engr.oregonstate.edu/teach.php

2. In the menu on the right side, go to Class Tools -> Submit Assignment.

3. Select CS 161 Lab 1 from the list of assignments and click “SUBMIT NOW”.

4. You will upload two files. Individually select your text/Word file with written answers to

sections B., E., and F. as one file and your .cpp file as the other one.

5. Click the Submit button.

6. You are done!

If you finish the lab early, this is a golden chance to start working on Assignment 1

(with TAs nearby to answer questions!).

Remember, the assignment you submit must be your work alone.

https://teach.engr.oregonstate.edu/teach.php

