

 1

CS 161 Lab #4 – Functions and Debugging
• Start by getting checked off for (up to) 3 points of work from the previous lab in the first

10 minutes.
• Each lab will start with a recap of the last lab and a demo by the TAs of the new

concepts in the current lab. Therefore, this document does not cover everything that
will be covered. You are highly encouraged to ask questions and take your own notes.

• To get credit for this lab, you must be checked off by a TA by the end of lab.

Goals:

• Enable you to customize vim
• Practice identifying, locating, and fixing bugs
• Practice writing and using functions

(3 pts) A. Lab Quiz (Canvas)
Visit this link on Canvas to take the Lab 4 quiz:
https://oregonstate.instructure.com/courses/1771939/quizzes/2533200
Re-take the quiz until you get all of the questions right! Canvas saves your last score, not your
highest score. If you don’t get 6/6 within the time available, finish outside of lab.

(1 pt) B. Customizing vim
For this part of the lab, you will create a .vimrc file that will allow you to customize vim‘s
behavior when you write and edit C++ programs. First, create and open a simple .vimrc file
in your home directory on the ENGR (flip) server:

$ vim .vimrc

In this file, you can insert the following lines to make working with vim easier. Add one or more
to your .vimrc, save the file, quit vim, and then re-start vim to see the changes. Keep the
options you like. Comments are prefaced with a double-quotation mark, ".

filetype on
filetype plugin on
filetype indent on
autocmd FileType c, cpp
set cindent "Use c-like indentation
set sw=3 "Set the sw for the auto indent to 3 spaces
set number "Show the line numbers on the left

"Change the color of the text and turn on syntax highlighting:
"color desert "Uncomment this option to activate it
color torte
colorscheme evening

 2

syntax on "Turn on syntax highlighting
set showmatch "Show matching braces
set showmode "Show current mode

"When the opening character of a string, code block {},
"or function call () is typed, vim will automatically add
"the closing character and move the cursor left for easy editing.
inoremap ' ''<Left> "These are single quotes
inoremap " ""<Left> "These are double quotes

inoremap { {}<Left>
inoremap (()<Left>

There are many more commands you can insert in this file. Here is a reference guide to some
of them: http://vimdoc.sourceforge.net/htmldoc/starting.html

To get checked off for this section, show a TA your .vimrc file and tell him/her which
option(s) you find the most useful.

(2 pts) C. Testing and Debugging
Test your skills as a bug detective!

1. Download the following cpp file.
http://classes.engr.oregonstate.edu/eecs/winter2020/cs161-020/labs/buggyCode.cpp
You can transfer it directly to your ENGR account from linux:

$ wget http://classes.engr.oregonstate.edu/eecs/winter2020/cs161-
020/labs/buggyCode.cpp

2. Add a proper file header with both partners’ names, assignment, etc.
3. Find as many bugs as possible in this file and fix them. Some are logic errors, and some are
syntax errors. Hint: there are 21 bugs, of varying complexity.

• Add a comment indicating what you changed/fixed for each bug.
• Use your bug detection tools:

o Visual inspection
o Compiler error interpretation
o Create test cases and see if the output matches your expectation

• Use your bug localization tools:
o Compiler error line numbers
o cout to inspect variable values during program execution
o cin to pause program execution
o assert() to declare what must be true (and the program will halt if not)
o Trace through the code – read it out loud and make sure it does what you expect
o Comment out problematic code to isolate it

 3

Be sure to re-compile and run the program after you make each single fix to a mistake to
make sure you correctly fixed the mistake, didn’t introduction new errors, and/or
inadvertently eliminated other errors as a result of the fix.

(2 pts) D. Design Functions to Operate on Characters
Pair Programming: In this lab, you can choose a partner for pair programming on sections D
(design) and E (implementation). You must be checked off together, and you only need one
computer for pair programming. One person will be the driver, who controls the computer and
codes, while the other is the navigator, who observes and advises. After ~15 minutes, you will
switch driver and navigator, continuing this pattern until the task is complete.
Working with your partner, develop a mini-design for each of the following character operations.
Your mini-design for each one will describe the operation of a function. For each one, write
down your understanding of the problem, your flow chart or pseudocode, and at least 5 test
cases.

• is_vowel(char c): return true if c is a vowel and otherwise false.
You can assume that the input is lower case ('a' through 'z').

• swap_case(char c): returns character c in the opposite case. That is, if c is lower-
case then return the upper-case version of c, and vice versa.
Examples (these can be test cases): a -> A, Q -> q.
You can assume the input is a valid letter ('A' through 'Z' or 'a' through 'z').

Note that you can compare character variables using relational operators like <, >, <=, >= to
figure out what case character c is.

(2 pts) E. Implement Functions to Operate on Characters
Once your designs are checked off, proceed to implementation.

1. Create a file named lab4_char_functions.cpp .
2. Create a main() method that will call your functions using each of the test cases from

your design.
3. Implement the is_vowel() and swap_case() functions above main() in the file.

Include the function headers that are defined for you below.
4. Compile and run your program. Check your test cases and refine your program until all

of them pass.
Switch partners every ~15 minutes, and have fun!
/**
 ** Function: is_vowel
 ** Description: check whether a character is a vowel
 ** Parameters: a single character, c
 ** Pre-conditions: c is a lower-case letter (a-z)
 ** Post-conditions: return true if c is a vowel and otherwise false
 **/
bool is_vowel(char c)
{

 ...
}

 4

/**
 ** Function: swap_case
 ** Description: generate and return the opposite case character
 ** (lower-case => upper-case and vice-versa)
 ** Parameters: a single character, c
 ** Pre-conditions: c is a lower-case (a-z) or upper-case (A-Z) letter
 ** Post-conditions: if c is lower-case, return upper-case C,
 ** and vice-versa
 **/

char swap_case(char c)
{
 ...
}

E. Submit your programs to TEACH

Only one partner needs to submit. Both partners’ names must be in the comment header to get
credit.

1. Transfer your .cpp file from the engr servers to your local laptop.
2. Connect to TEACH here: https://teach.engr.oregonstate.edu/teach.php
3. In the menu on the right side, go to Class Tools -> Submit Assignment.
4. Select CS 161 020 Lab_4 from the list of assignments and click “SUBMIT NOW”.
5. Select your .cpp files (lab4_buggy_code.cpp, lab4_char_functions.cpp).
6. Click the Submit button.
7. You are done!

Point totals: 3 pts (quiz) + 1 pt (.vimrc) + 2 pts (debugging) + 2 pts (design) + 2 pts
(implementation)

If you finish the lab early, this is a golden chance to work on your Assignment 3 design

(with TAs nearby to answer questions!).
Remember, the design you submit must be your work alone (no partners).

