

 1

CS 161 Lab #8 – Structs and Debugging with GDB
• Get checked off for (up to) 3 points of work from the previous lab in the first 10 minutes,

if you had a non-zero grade for Lab 7 already.
• To get credit for this lab, you must be checked off by a TA by the end of lab.
• This lab should be done solo, not via pair programming.

Goals:

• Practice designing and using C++ structs
• Gain experience using a debugger (GDB)

(3 pts) A. Lab Quiz (Canvas)
Visit this link on Canvas to take the Lab 8 quiz:
https://oregonstate.instructure.com/courses/1771939/quizzes/2535696
Re-take the quiz until you get all of the questions right! Canvas saves your last score, not your
highest score. If you don’t get 100% within the time available, finish outside of lab.

 (3 pts) B. Working with Structs

Let's create a new data type called umbrella with two member variables:
struct umbrella {
 float length;
 string color;
};

Write a program called lab8_umbrellas.cpp that includes this data type (struct) definition
before the main() method.

1. Inside main(), declare a static array that contains three umbrellas.
2. Write a for loop to read in values from the user for the length and color members of each
umbrella. You do not need to check for valid user input.
3. Write a for loop to find the index of the longest umbrella.
4. Output the index, length, and color of the longest umbrella.

Example output (user input is highlighted):
Enter length for umbrella 0: 5.3
Enter color for umbrella 0: red
Enter length for umbrella 1: 7.9
Enter color for umbrella 1: green
Enter length for umbrella 2: 4.1
Enter color for umbrella 2: black
The longest umbrella (index 1) has a length of 7.9 and is green.

 2

 (4 pts) C. Using a Debugger (GDB)

The purpose of a debugger is to allow you to see what is going on "inside" a program while it
executes -- or what the program was doing at the moment it crashed.
We will explore using the GNU Project Debugger (GDB) as a tool for interactive debugging.
GDB gives you fine control over the execution of your program to help find bugs in action:

• Start your program, specifying anything that might affect its behavior.
• Make your program stop on specified conditions.
• Examine the computer state (memory, variables, pointers) when your program has

stopped.
• Change details of your program so you can experiment with correcting the effects of one

bug and go on to learn about the next one.

The GDB man page is a good source of information. You can access it with
$ man gdb

The first step is to compile your program with debugging symbols preserved, using the -g flag:

$ g++ filename.cpp -g -o executable_filename

Let’s start with a simple program that gets a line of text from the user, and prints it out
backwards to the screen. Type this program into a file called debug.cpp :

#include <iostream>
#include <cstring>

using namespace std;

int main() {
 char input[50];
 int i = 42;
 cin.getline(input, 50);
 for (i = strlen(input); i >= 0; i--) {
 cout << input[i];
 }
 cout << endl;

 return 0;
}

Compile the program and start the debugger with:
$ g++ debug.cpp -g -o debug
$ gdb ./debug

 3

Complete the following mini-tutorial to learn the 8 main commands that you'll need for
debugging:

1. break
2. run
3. print
4. next & step
5. continue
6. display & watch
7. where (or bt)

1. The break Command:

Before we begin, note that you can get information about any gdb command by typing
(gdb) help [command]
at the gdb prompt.

gdb has access to the line numbers of your source file. This lets us set breakpoints for the
program. A breakpoint is a line in the code where you want execution to pause. Once you
pause execution you will be able to examine variables, walk through the program, and make
changes.

Set up a break point at line 8, just before we declare int i = 42;

(gdb) break 8
Breakpoint 1 at 0x4008b5: file debug.cpp, line 8.
(gdb)

0x4008b5 is the location of that line of code in memory (on the stack). The number you see
may be different.

2. The run Command:

run begins initial execution of your program. This will run your program as you normally would
outside of the debugger, until it reaches a breakpoint line. At that point, you are returned to the
gdb command prompt. (Using run again after your program has been started will cause gdb to
ask whether you want to start over from the beginning.)

From our example:

Starting program: ./debug

Breakpoint 1, main () at debug.cpp:8
8 int i = 42;

3. The print Command:

 4

print will let you inspect the values of variables in your program. It takes an argument of the
variable name.

In our example, the program is paused right before we declare and initialize i. Let’s see what
the value of i is now:

(gdb) print i
$1 = 0

In this case, i contains 0 prior to initialization.

4. The next and step Commands:

next and step provide two ways to step line by line through the program. The difference is that
next steps over a function call, while step will step into it.

Step to the beginning of the next statement:

(gdb) step
9 cin.getline(input, 50);

Before we execute the cin.getline(), let’s check the value of i again:

(gdb) print i
$2 = 42

i is now equal to 42, because the assignment statement executed.

Now let’s use next to move on to the cin.getline() statement:

(gdb) next

What is happening? The program is waiting for you to type something. Type in "hello" (without
the quotes) and press enter.

hello
10 for (i = strlen(input); i >= 0; i--) {

5. The continue Command

continue will resume execution of the program after it reached a breakpoint.

Let’s continue to the end of the program now:
(gdb) continue
Continuing.
olleh
[Inferior 1 (process 23414) exited normally]

 5

We've reached the end of the program, which printed "olleh", the reverse of what we typed in.

6. The display and watch Commands:

display shows a variable’s contents at each step through the program. First let's look at our
breakpoints:

(gdb) info breakpoints
Num Type Disp Enb Address What

1 breakpoint keep y 0x00000000004008b5 in main() at debug.cpp:8

 breakpoint already hit 1 time

Delete breakpoint 1 (which was at line 8):

(gdb) del break 1
(gdb) info breakpoints
No breakpoints or watchpoints.

You can also delete all breakpoints using del with no arguments (gdb will ask you to confirm).

Now set a new breakpoint at line 11, the cout statement inside the for loop:

(gdb) break 11
Breakpoint 2 at 0x4008e3: file debug.cpp, line 11.

Run the program again and enter an input string. When it returns to the gdb command prompt,
we will use display input[i] to watch how that expression changes as the for loop
executes. While print shows a variable once, display shows the variable each time the
program stops (e.g., each next or breakpoint reached).

Breakpoint 2, main () at debug.cpp:11
11 cout << input[i];
(gdb) display input[i]
1: input[i] = 0 '\000'
(gdb) print i
$3 = 5
(gdb) next
10 for (i = strlen(input); i >= 0; i--) {
1: input[i] = 0 '\000'
(gdb) next

Breakpoint 2, main () at debug.cpp:11
11 cout << input[i];
1: input[i] = 111 'o'
(gdb) print i

 6

$4 = 4
(gdb) next
13 for (i = strlen(input); i >= 0; i--) {
1: input[i] = 111 'o'

Here we stepped through two iterations of the loop. Each step displayed input[i]
automatically. We printed out i explicitly as well.

We can also watch a variable, which stops execution and displays the contents at any point
when the memory changes. For example, we can watch the i variable change in the for loop:

(gdb) run
The program being debugged has been started already.
Start it from the beginning? (y or n) y
Starting program: ./debug
(gdb) watch i
Hardware watchpoint 2: i
(gdb) continue
Continuing.
hello
Hardware watchpoint 2: i

Old value = 0
New value = 5
0x00000000004008e1 in main () at debug.cpp:10
10 for (i = strlen(input); i >= 0; i--) {
(gdb) continue
Continuing.
Hardware watchpoint 3: i

Old value = 5
New value = 4
0x0000000000400900 in main () at debug.cpp:10
10 for (i = strlen(input); i >= 0; i--) {
(gdb) continue
Continuing.
Hardware watchpoint 3: i

Old value = 4
New value = 3
0x0000000000400900 in main () at debug.cpp:10
10 for (i = strlen(input); i >= 0; i--) {

 7

7. The where (or backtrace) Command:

The where (or backtrace) command prints a backtrace of all stack frames. A new stack
frame is created each time a function is called. A backtrace shows the list of stack frames that
were created to reach the current program point. This can be very helpful for figuring out what
caused a program to crash.

Quit your current gdb session (quit) and use vim to modify the program just a little so that it
will crash:

#include <iostream>
#include <cstring>

using namespace std;

int main() {
 char* input = NULL;
 int i = 42;
 cin.getline(input, 50);
 for (i = strlen(input); i >= 0; i--) {
 cout << input[i];

 }
 cout << endl;
 return 0;
}

We changed input to be a pointer to a char and set it to NULL to make sure it doesn’t point
anywhere until we set it. Recompile the program and run gdb to see what happens when it
crashes.

(gdb) run
Starting program: ./debug
hello

Program received signal SIGSEGV, Segmentation fault.
0x00007ffff7b499b0 in std::istream::getline(char*, long, char) () from
/lib64/libstdc++.so.6
(gdb) where
#0 0x00007ffff7b499b0 in std::istream::getline(char*, long, char) ()
from /lib64/libstdc++.so.6
#1 0x00000000004008ca in main () at debug.cpp:9

The program crashed when getline() tried to put data into the NULL pointer. This is in stack
frame #0. We can move "up" to frame #1 to inspect what was happening in main() when
getline() was called.

 8

(gdb) up
#1 0x00000000004008ca in main () at debug.cpp:9
9 cin.getline(input, 50);

This indicates that line #9 is where the program crashed. We can then inspect the input
variable and figure out why there was a crash.

(gdb) p input
$5 = 0x0

A NULL pointer! The perfect clue to encourage us to check whether we allocated memory for
the string (or forgot).

There are many more useful gdb commands, such as setting a breakpoint whenever a certain
function is called (break my_function_name). Here is a useful quick reference:

http://users.ece.utexas.edu/~adnan/gdb-refcard.pdf

Remember, you can type

(gdb) help [command]

anytime to get immediate information about a command.

Ask a TA to check your work (get points) and submit your programs to TEACH

1. Transfer your .cpp file from the ENGR servers to your local laptop.
2. Connect to TEACH here: https://teach.engr.oregonstate.edu/teach.php
3. In the menu on the right side, go to Class Tools -> Submit Assignment.
4. Select CS 161 020 Lab_8 from the list of assignments and click “SUBMIT NOW”.
5. Select your .cpp file (lab8_umbrellas.cpp).
6. Click the Submit button.
7. You are done!

Point totals: 3 pts (quiz) + 3 pts (structs) + 4 pts (gdb)

If you finish the lab early, this is a chance to work on your Assignment 5 design

(with TAs nearby to answer questions!).

