CS 536: Introduction to Graphical Models
Winter 2020
Assignment #3

Out: Wednesday, Jan 22, 2020
Due: In class, Wednesday, Jan 29, 2020
Total marks: 35

1. (Exercise 4.1 in the book) Complete the analysis of example 4.4, showing that the distribution P defined in the example does not factorize over \mathcal{H}. (Hint: Use a proof by contradiction). If you read Theorem 4.1 to Example 4.4 on pages 115-116, it will really help with this question. [10 points]

2. (Exercise 4.10 in the book) We define the following properties for a set of independencies:
 - Strong Union: $(X \perp Y|Z) \implies (X \perp Y|Z, W)$
 In other words, additional evidence W cannot induce dependence
 - Transitivity: For all disjoint sets X, Y, Z and all variables A (where A is not a part of $X, Y,$ or Z):
 \[\neg(X \perp A|Z) \& \neg(A \perp Y|Z) \implies \neg(X \perp Y|Z) \]
 Intuitively, this statement asserts that if X and Y are both correlated with some A (given Z), then they are also correlated with each other (given Z). We can also write the contrapositive of this statement, which is less obvious but easier to read.
 For all X, Y, Z, A:
 \[(X \perp Y|Z) \rightarrow (X \perp A|Z) \lor (A \perp Y|Z). \]
 Prove that if $\mathcal{I} = I(H)$ for some Markov network H, then \mathcal{I} satisfies strong union and transitivity. (If you aren’t familiar with some of the symbols, \neg means logical NOT, $\&$ means logical AND and \lor means logical OR) [10 points]

3. (Exercise 4.14a in the book). The Markov blanket of a node X in a Bayesian network G, denoted $\text{MB}_G(X)$, is defined to be the nodes consisting of X’s parents, X’s children, and other parents of X’s children. Show the following:
 For any variable X, let $W = X - \{X\} - \text{MB}_G(X)$ where X is the set of all random variables in the Bayesian network G. Then d-sep$_G(X; W | \text{MB}_G(X))$ [10 points]

4. (Exercise 4.18 in the book) Let G be a Bayesian network structure and \mathcal{H} a Markov network structure over \mathcal{X} such that the skeleton of G is precisely \mathcal{H}. Prove that if G has no immoralities, then $I(G) = I(\mathcal{H})$. [5 points]