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The Chow-Liu Algorithm

C. K. Chow and C. N. Liu. Approximating discrete 
probability distributions with dependence trees. IEEE 
Transactions of Information Theory, IT-14(3), 1968. 
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The Goal

Given a finite set of samples in a dataset, 
estimate the underlying n-dimensional discrete 
probability distribution using a tree model.



2

3

Trees

What is a tree?

• The variables in the dataset are the vertices V

• There are edges in the set E that connect the 
vertices

• We’ll assume the edges are undirected for now

• A graph (V,E) is a tree if it is connected and has 
no cycles

Technical point: We will allow our trees to be a forest ie. the tree 
model we learn may be disconnected 
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Trees
• In a directed tree, we pick a vertex as the root 

• We then turn the edges into directed edges and 
orient the edges away from the root

• This means that each vertex has at most one parent 
(but may have more than one child)
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Tree Models

Notation:

• (as in bold x) is an n-dimensional vector ie. 
, , … ,

• Each in is a variable

• is a joint probability distribution of n
discrete variables , , … ,
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Tree Models

• We want to approximate the true joint probability 
distribution using tree models of the form:

• means “parent of variable i”

• If i is the root then 	is the empty set: 

|
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Tree Models

• Tree models consider the pairwise
relationships between variables in the 
dataset

• It is an improvement over just treating the 
variables independently of each other

|
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Closeness of approximation

• Let P and	 be two probability 
distributions of n discrete variables 

, , … , .

• Let

Note: This summation is over all configurations of , , … ,

The formula for , is called the Kullback-Leibler
divergence (or KL divergence for short)

,
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Kullback-Leibler Divergence

• We’ll rewrite the KL divergence as:

, log

• The first term doesn’t depend on .

• The second term is known as the cross-entropy 
between and .

• Properties of KL divergence:

– , 0
– , 0 if and only if ≡ for 

all 
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A Minimization Problem

Given:

• An nth-order probability distribution 
, , … , with being discrete

• - The set of all possible first-order 
dependence trees

Find the optimal first-order dependence tree 
such that KL , , for all 

.
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Exhaustive Search

• Why not just search over all possible trees?

• Not feasible -- there are n(n-2) possible trees 
with n vertices (from Cayley’s formula)

• We will turn the search into a maximum 
weight spanning tree (MWST) problem
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Mutual Information

• Define the mutual information , between 
two variables and to be:

• Key insight: a probability distribution of tree 
dependence is an optimum approximation to 

iff its tree model has maximum weight

• Proof to follow

, ,
,

,
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Proof

,
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,
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Proof (continued)
Note that: ∑ log ∑

To see this, suppose , , let all variables are binary, let 
i=1
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Proof (continued)
In the same way:

,

,
,

,
,
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Proof (continued)
One more piece of notation:

Substituting the expressions above and from pg 12 into the last line 
of pg 13:

, ,
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Proof

Independent of the 
dependence tree

Mutual information 
is always ≥ 0

Minimizing , is the same as maximizing the total 
branch weight:

, ,

,
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The algorithm

• First calculate all n(n-1)/2 pairwise mutual 
information measures

• Use Kruskal’s algorithm to construct maximum 
weight spanning tree:
– Construct tree one edge at a time, in decreasing 

order of the weights
– If all weights are > 0, you get one connected 

component
– Running time is O(n2) for n variables because 

you have to consider all n(n-1)/2 edges
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Estimation

• But in order to calculate mutual information 
, , you need the probability 

distribution 

• Need to estimate the mutual information 
from a finite set of samples using maximum 
likelihood estimation
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Estimation
Suppose you are given s independent samples x1, x2, …, xs of a 
discrete variable x.  Each sample is an n-component vector ie. xk

= (xk
1, xk

2, …, xk
n).

vxuxjin jiuv   and  with samples of # ),(
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Maximum Likelihood 
Estimator for P(xi = u)
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Estimation
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Calculate:

Use                   in Kruskal’s algorithm instead of),(ˆ ji xxI

),( ji xxI
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The entire algorithm

1. Compute marginal counts fu(i) and pairwise 
counts fuv(i,j)

2. Compute mutual information

for all pairs xi and xj

3. Compute MWST using Kruskal’s algorithm.  
Pick a root, orient edges away from the root.  

4. Set the parameters in the CPTs for each node to 
be their maximum likelihood estimates:
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The entire algorithm

1. Compute marginal counts fu(i) and pairwise 
counts fuv(i,j)

2. Compute mutual information

for all pairs xi and xj

3. Compute MWST using Kruskal’s algorithm.  
Pick a root, orient edges away from the root.

),(ˆ ji xxI

Steps 1-3 dominate the complexity – they all take O(n2) 
time
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