The Chow-Liu Algorithm

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions of Information Theory, IT-14(3), 1968.

The Goal

Given a finite set of samples in a dataset, estimate the underlying n-dimensional discrete probability distribution using a tree model.

Trees

What is a tree?

- The variables in the dataset are the vertices V
- There are edges in the set E that connect the vertices
- We'll assume the edges are undirected for now
- A graph (V, E) is a tree if it is connected and has no cycles

Technical point: We will allow our trees to be a forest ie. the tree model we learn may be disconnected

Trees

- In a directed tree, we pick a vertex as the root
- We then turn the edges into directed edges and orient the edges away from the root
- This means that each vertex has at most one parent (but may have more than one child)

Tree Models

Notation:

- \boldsymbol{x} (as in bold x$)$ is an n -dimensional vector ie. $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
- Each x_{i} in \boldsymbol{x} is a variable
- $P(\boldsymbol{x})$ is a joint probability distribution of n discrete variables $x_{1}, x_{2}, \ldots, x_{n}$

Tree Models

- We want to approximate the true joint probability distribution using tree models of the form:

$$
P_{t}(x)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{\pi(i)}\right)
$$

- $\pi(i)$ means "parent of variable i "
- If i is the root then $\pi(i)$ is the empty set: $P\left(x_{i} \mid x_{\pi(i)}\right)=P\left(x_{i}\right)$

$$
\begin{array}{r}
\text { Tree Models } \\
P_{t}(x)=\prod_{i=1}^{n} \underbrace{P\left(x_{i} \mid x_{\pi(i)}\right)}
\end{array}
$$

- Tree models consider the pairwise relationships between variables in the dataset
- It is an improvement over just treating the variables independently of each other

Closeness of approximation

- Let $\mathrm{P}(\mathbf{x})$ and $P_{t}(\boldsymbol{x})$ be two probability distributions of n discrete variables $\boldsymbol{x}=$ $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$.
- Let

$$
K L\left(P, P_{t}\right)=\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \log \frac{P(\boldsymbol{x})}{P_{t}(\boldsymbol{x})}
$$

Note: This summation is over all configurations of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$
The formula for $K L\left(P, P_{t}\right)$ is called the Kullback-Leibler divergence (or KL divergence for short)

Kullback-Leibler Divergence

- We'll rewrite the KL divergence as:

$$
K L\left(P, P_{t}\right)=\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \log P(\boldsymbol{x})-\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \log P_{t}(\boldsymbol{x})
$$

- The first term doesn't depend on P_{t}.
- The second term is known as the cross-entropy between P and P_{t}.
- Properties of KL divergence:
$-K L\left(P, P_{t}\right) \geq 0$
- KL(P, $\left.P_{t}\right)=0$ if and only if $P(\boldsymbol{x}) \equiv P_{t}(\boldsymbol{x})$ for all \boldsymbol{x}

A Minimization Problem

Given:

- An nth-order probability distribution $P\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ with x_{i} being discrete
- T_{n} - The set of all possible first-order dependence trees

Find the optimal first-order dependence tree τ such that $\operatorname{KL}\left(P, P_{\tau}\right) \leq K L\left(P, P_{t}\right)$ for all $t \in T_{n}$.

Exhaustive Search

- Why not just search over all possible trees?
- Not feasible -- there are $\mathrm{n}^{(\mathrm{n}-2)}$ possible trees with n vertices (from Cayley's formula)
- We will turn the search into a maximum weight spanning tree (MWST) problem

Mutual Information

- Define the mutual information $I\left(x_{i}, x_{j}\right)$ between two variables x_{i} and x_{j} to be:

$$
I\left(x_{i}, x_{j}\right)=\sum_{x_{i}, x_{j}} P\left(x_{i}, x_{j}\right) \log \left(\frac{P\left(x_{i}, x_{j}\right)}{P\left(x_{i}\right) P\left(x_{j}\right)}\right)
$$

- Key insight: a probability distribution of tree dependence $P_{t}(\boldsymbol{x})$ is an optimum approximation to $P(\boldsymbol{x})$ iff its tree model has maximum weight
- Proof to follow

$$
\begin{aligned}
& \text { Proof } \\
& K L\left(P, P_{t}\right)=\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \log P(\boldsymbol{x})-\sum_{x_{n}} P(\boldsymbol{x}) \sum_{i=1}^{n} \log P\left(x_{i} \mid x_{\pi(i)}\right) \\
& =\sum_{x} P(\boldsymbol{x}) \log P(\boldsymbol{x})-\sum_{x} P(\boldsymbol{x}) \sum_{i=1, \neq \text { root }}^{n} \log \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{\pi(i)}\right)} \\
& =\sum_{x} P(\boldsymbol{x}) \log P(\boldsymbol{x})-\sum_{x} P(\boldsymbol{x}) \sum_{i=1, \neq \text { root }}^{n} \log \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
& -\sum_{x} P(\boldsymbol{x}) \sum_{i=1}^{n} \log P\left(x_{i}\right)
\end{aligned}
$$

Proof (continued)

Note that: $-\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \log P\left(x_{i}\right)=-\sum_{x_{i}} P\left(x_{i}\right) \log P\left(x_{i}\right)$
To see this, suppose $\boldsymbol{x}=\left(x_{1}, x_{2}\right)$, let all variables are binary, let $i=1$

$-\sum P(x) \log P\left(x_{i}\right)$

$=-\left[P\left(x_{1}=0, x_{2}=0\right) \log P\left(x_{1}=0\right)+P\left(x_{1}=0, x_{2}=1\right) \log P\left(x_{1}=0\right)+\right.$
$\left.P\left(x_{1}=1, x_{2}=0\right) \log P\left(x_{1}=1\right)+P\left(x_{1}=1, x_{2}=1\right) \log P\left(x_{1}=1\right)\right]$
$=-\left[P\left(x_{1}=0\right) \log P\left(x_{1}=0\right)+P\left(x_{1}=1\right) \log P\left(x_{1}=1\right)\right]$
$=-\sum_{x_{1}} P\left(x_{1}\right) \log P\left(x_{1}\right)=-\sum_{x_{i}} P\left(x_{i}\right) \log P\left(x_{i}\right)$

Proof (continued)

In the same way:

$$
\begin{aligned}
& \sum_{x} P(x) \log \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)} \\
& =\sum_{x_{i}, x_{\pi(i)}} P\left(x_{i}, x_{\pi(i)}\right) \log \frac{P\left(x_{i}, x_{\pi(i)}\right)}{P\left(x_{i}\right) P\left(x_{\pi(i)}\right)}=I\left(x_{i}, x_{\pi(i)}\right)
\end{aligned}
$$

Proof (continued)

One more piece of notation:

$$
\begin{aligned}
& H(\boldsymbol{x})=-\sum_{\boldsymbol{x}} P(\boldsymbol{x}) \log P(\boldsymbol{x}) \\
& H\left(x_{i}\right)=-\sum_{x_{i}} P\left(x_{i}\right) \log P\left(x_{i}\right)
\end{aligned}
$$

Substituting the expressions above and from pg 12 into the last line of pg 13:

$$
K L\left(P, P_{t}\right)=-\sum_{i=1}^{n} I\left(x_{i}, x_{\pi(i)}\right)+\sum_{i=1}^{n} H\left(x_{i}\right)-H(\boldsymbol{x})
$$

$$
\begin{gather*}
\text { Proof } \\
K L\left(P, P_{t}\right)=-\sum_{i=1}^{n} I(\underbrace{I\left(x_{i}, x_{\pi(i)}\right)}+\sum_{i=1}^{n} H\left(x_{i}\right)-H(x)
\end{gather*}
$$

Mutual information is always ≥ 0

Independent of the dependence tree

Minimizing $I\left(P, P_{t}\right)$ is the same as maximizing the total branch weight:

$$
\sum_{i=1}^{n} I\left(x_{i}, x_{\pi(i)}\right)
$$

The algorithm

- First calculate all n(n-1)/2 pairwise mutual information measures
- Use Kruskal's algorithm to construct maximum weight spanning tree:
- Construct tree one edge at a time, in decreasing order of the weights
- If all weights are >0, you get one connected component
- Running time is $\mathrm{O}\left(\mathrm{n}^{2}\right)$ for n variables because you have to consider all $n(n-1) / 2$ edges

Estimation

- But in order to calculate mutual information

Estimation

Suppose you are given s independent samples $\boldsymbol{x}^{1}, \boldsymbol{x}^{2}, \ldots, \boldsymbol{x}^{s}$ of a discrete variable \boldsymbol{x}. Each sample is an n-component vector ie. $\mathbf{x}^{\mathbf{k}}$ $=\left(\mathrm{x}^{\mathrm{k}}, \mathrm{x}^{\mathrm{k}}, \ldots, \mathrm{x}_{\mathrm{n}}^{\mathrm{k}}\right)$.

Define:
$n_{u v}(i, j)=\#$ of samples with $x_{i}=u$ and $x_{j}=v$
$f_{u v}(i, j)=\frac{n_{u v}(i, j)}{\sum_{u, v} n_{u v}(i, j)} \quad \begin{gathered}\text { Maximum Likelihood } \\ \text { Estimator for } \mathrm{P}\left(\mathrm{x}_{\mathrm{i}}=\mathrm{u}, \mathrm{x}_{\mathrm{j}}=\mathrm{v}\right)\end{gathered}$
$f_{u}(i)=\sum_{v} f_{u v}(i, j)$
Maximum Likelihood
Estimator for $\mathrm{P}\left(\mathrm{x}_{\mathrm{i}}=\mathrm{u}\right)$

Estimation

Calculate:

$\hat{I}\left(x_{i}, x_{j}\right)=\sum_{u, v} f_{u v}(i, j) \log \frac{f_{u v}(i, j)}{f_{u}(i) f_{v}(j)}$
Use $\hat{I}\left(x_{i}, x_{j}\right)$ in Kruskal's algorithm instead of
$I\left(x_{i}, x_{j}\right)$

The entire algorithm

1. Compute marginal counts $f_{u}(i)$ and pairwise counts $f_{u v}(i, j)$
2. Compute mutual information $\hat{I}\left(x_{i}, x_{j}\right)$ for all pairs x_{i} and x_{j}
3. Compute MWST using Kruskal's algorithm. Pick a root, orient edges away from the root.
4. Set the parameters in the CPTs for each node to be their maximum likelihood estimates:
$P\left(x_{i} \mid x_{\pi(i)}\right)=\frac{f_{u v}(i, \pi(j))}{f_{u}(i)}$

The entire algorithm

1. Compute marginal counts $f_{u}(i)$ and pairwise counts $f_{u v}(i, j)$
2. Compute mutual information $\hat{I}\left(x_{i}, x_{j}\right)$ for all pairs x_{i} and x_{j}
3. Compute MWST using Kruskal's algorithm. Pick a root, orient edges away from the root.
 time

References

- Chow, C. K. and Liu, C. N.
"Approximating Discrete Probability Distributions with Dependence Trees".
- Meila-Predoviciu, M. Learning with Mixtures of Trees, PhD Thesis, MIT, 1999.

