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The Goal

Given a finite set of samples in a dataset,
estimate the underlying n-dimensional discrete
probability distribution using a tree model.

Trees

What is a tree?
» The variables in the dataset are the vertices V

 There are edges in the set E that connect the
vertices

* We’ll assume the edges are undirected for now

» A graph (V,E) is a tree if it is connected and has
no cycles

Technical point: We will allow our trees to be a forest ie. the tree

model we learn may be disconnected

Trees

* In a directed tree, we pick a vertex as the root

* We then turn the edges into directed edges and
orient the edges away from the root

* This means that each vertex has at most one parent
(but may have more than one child)
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Tree Models

Notation:

e x (as in bold x) is an n-dimensional vector ie. x =
(%1, %5, e, xp)

* Each x; in x is a variable

e P(x) is a joint probability distribution of n
discrete variables x4, x5, ..., X,

Tree Models

* We want to approximate the true joint probability
distribution using tree models of the form:

P = | | PGribtac)
i=1

e 1(i) means “parent of variable i”

+ Ifiis the root then (i) is the empty set:
P(xi|xz@)) = P(x:)

Tree Models

P = [ | Ptltne)
=1\

* Tree models consider the pairwise
relationships between variables in the
dataset

« It is an improvement over just treating the
variables independently of each other

Closeness of approximation

» Let P(x) and P;(x) be two probability

distributions of n discrete variables x =
(%1, %2, ) Xp).

e Let

P(x)
Pe(x)

KL(P,P,) = Z P(x)log
Tx

Note: This summation is over all configurations of (xy, x5, ..., X,,)

The formula for KL(P, P;) is called the Kullback-Leibler
divergence (or KL divergence for short)




Kullback-Leibler Divergence A Minimization Problem

+ We’ll rewrite the KL divergence as: Given:
KL(P,P,) = Z P(x)log P(x) — z P(x)logP,(x) « An nth-order probability distribution
x X P(xq,x3, ..., Xx,) With x; being discrete

* The first term doesn’t depend on P e T,- The set of all possible first-order

* The second term is known as the cross-entropy dependence trees

between P and P;.
* Properties of KL divergence:

_KL(P,P,) >0 Find the optimal first-order dependence tree T
_ KL(P,P,) = 0 if and only if P(x) = P,(x) for such that KL(P, i) < KL(P, P;) for all
all x teTy.
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Exhaustive Search Mutual Information
» Why not just search over all possible trees? * Define the mutual information I (x;, x;) between
+ Not feasible -- there are n®2 possible trees two variables x; and ; to be:
with n vertices (from Cayley’s formula) 1) = Z P(x03,)l0g (pp(xiz'axj) )
+ We will turn the search into a maximum o ()P (%))
weight spanning tree (MWST) problem « Key insight: a probability distribution of tree

dependence P;(x) is an optimum approximation to
P(x) iff its tree model has maximum weight

* Proofto follow




Proof

KL(P,P,) = Z P(x)logP(x) — Z P(x) Z logP (x;i|xx(1)

x =
n

P » (L
ZP(x)logP(x) ZP(x) Z log%

i=1,#root
n

P(x, Xp (g

i=1,#root
n
- > P ) logP(x)
x i=1

Proof (continued)
Note that: — ¥, P(x)log P(x;) = — X, P(x)logP (x;)

To see this, suppose x = (x4, x;), let all variables are binary, let
i=1

=2 P(x)logP(x)

=—{P(x, =0,X, =0)log P(X, =0)+ P(x, = 0,X, =1)log P(x, = 0)+
P(x, =1,X, =0)log P(x, =1)+ P(X, =1, X, =1)log P(X, =1)]

=—[P(x, =0)log P(x, = 0)+ P(x, =1)log P(x, =1)]

== P(x)logP(x) =2 P(x)logP(x)

Proof (continued)

In the same way:

P(xl xT[(l.))
ZP g B e P ey

P(x;, Xn (i)
= Z P(xi,xn(i))logW&;@)=I(xi.xn(i))

XiXm(i)

Proof (continued)

One more piece of notation:

H(x) = —z P(x)logP(x)

HG) == ) PGxlogP(xy)

Substituting the expressions above and from pg 12 into the last line
of pg 13:

n

KL(P,P,) = — Z I(xi, X)) + z H(x;) —H(x)
i=1

i=1




Proof

n n

KL(P,P) = — Z (i, X)) + Z H(x;) — H(x)
i Y S i=1

i=1 1=
N J
2%

Independent of the
dependence tree

Mutual information
is always > 0

Minimizing I (P, P,) is the same as maximizing the total
branch weight:

n
Z 1(x, Xr (i)
=1

The algorithm

+ First calculate all n(n-1)/2 pairwise mutual
information measures

» Use Kruskal’s algorithm to construct maximum
weight spanning tree:

— Construct tree one edge at a time, in decreasing
order of the weights

— If all weights are > 0, you get one connected
component

— Running time is O(n?) for n variables because
you have to consider all n(n-1)/2 edges

Estimation

* But in order to calculate mutual information
I(x;, x;), you need the probability
distribution P (x)

* Need to estimate the mutual information

from a finite set of samples using maximum
likelihood estimation

Estimation

Suppose you are given s independent samples x%, X2, ..., XS of a
discrete variable x. Each sample is an n-component vector ie. X<
= (xX, x5, ..., xK).

Define:

n, (i, j) =#of samples with X, =u and x; =v

. n, @, ) Maximum Likelihood
() =%

Z n,, @, j) Estimator for P(x; = u, X; = v)

u,v
. .. Maximum Likelihood
fu = Z fuv (9)) % Estimator for P(x; = u)
Vv
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Estimation

Calculate:

0,5 = 3 1 Dlog g e b, (1 1)

f, ()1, ()

Use IA(Xi ,X;) in Kruskal’s algorithm instead of

1(X, X;)
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The entire algorithm

1. Compute marginal counts f (i) and pairwise
counts f,,(i,j)

2. Compute mutual information i( X X;)
for all pairs x; and x;

3. Compute MWST using Kruskal’s algorithm.
Pick a root, orient edges away from the root.

4. Set the parameters in the CPTs for each node to
be their maximum likelihood estimates:

POt 1) =)
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The entire algorithm

1. Compute marginal counts f (i) and pairwise
counts f,(i,])

2. Compute mutual information [ (X5 %)
for all pairs x; and x;

3. Compute MWST using Kruskal’s algorithm.
Pick a root, orient edges away from the root.

Steps 1-3 dominate the complexity — they all take O(n?)
time
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