The Chow-Liu Algorithm

C. K. Chow and C. N. Liu. Approximating discrete probability distributions with dependence trees. IEEE Transactions of Information Theory, IT-14(3), 1968.

1

The Goal

Given a finite set of samples in a dataset, estimate the underlying n-dimensional discrete probability distribution using a tree model.

2

Trees

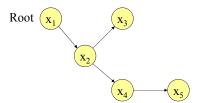
What is a tree?

- The variables in the dataset are the vertices V
- There are edges in the set E that connect the vertices
- We'll assume the edges are undirected for now
- A graph (V,E) is a tree if it is connected and has no cycles

Technical point: We will allow our trees to be a forest ie. the tree model we learn may be disconnected

Trees

- In a directed tree, we pick a vertex as the root
- We then turn the edges into directed edges and orient the edges away from the root
- This means that each vertex has at most one parent (but may have more than one child)



Tree Models

Notation:

- x (as in bold x) is an n-dimensional vector ie. $x = (x_1, x_2, ..., x_n)$
- Each x_i in x is a variable
- P(x) is a joint probability distribution of n discrete variables $x_1, x_2, ..., x_n$

5

Tree Models

• We want to approximate the true joint probability distribution using tree models of the form:

$$P_t(x) = \prod_{i=1}^n P(x_i|x_{\pi(i)})$$

- $\pi(i)$ means "parent of variable i"
- If *i* is the root then $\pi(i)$ is the empty set: $P(x_i|x_{\pi(i)}) = P(x_i)$

6

Tree Models

$$P_t(x) = \prod_{i=1}^n P(x_i | x_{\pi(i)})$$

- Tree models consider the pairwise relationships between variables in the dataset
- It is an improvement over just treating the variables independently of each other

Closeness of approximation

- Let $P(\mathbf{x})$ and $P_t(\mathbf{x})$ be two probability distributions of n discrete variables $\mathbf{x} = (x_1, x_2, ..., x_n)$.
- Let

$$KL(P, P_t) = \sum_{x} P(x) log \frac{P(x)}{P_t(x)}$$

Note: This summation is over all configurations of $(x_1, x_2, ..., x_n)$

The formula for $KL(P, P_t)$ is called the Kullback-Leibler divergence (or KL divergence for short)

Kullback-Leibler Divergence

• We'll rewrite the KL divergence as:

$$KL(P, P_t) = \sum_{x} P(x) \log P(x) - \sum_{x} P(x) \log P_t(x)$$

- The first term doesn't depend on P_t .
- The second term is known as the cross-entropy between *P* and *P_t*.
- Properties of KL divergence:
 - $\mathit{KL}(P, P_t) \geq 0$
 - $KL(P, P_t) = 0$ if and only if $P(x) \equiv P_t(x)$ for all x

9

A Minimization Problem

Given:

- An nth-order probability distribution $P(x_1, x_2, ..., x_n)$ with x_i being discrete
- *T_n* The set of all possible first-order dependence trees

Find the optimal first-order dependence tree τ such that $\mathrm{KL}(P, P_{\tau}) \leq KL(P, P_{t})$ for all $t \in T_{n}$.

10

Exhaustive Search

- Why not just search over all possible trees?
- Not feasible -- there are n⁽ⁿ⁻²⁾ possible trees with n vertices (from Cayley's formula)
- We will turn the search into a maximum weight spanning tree (MWST) problem

1

Mutual Information

• Define the mutual information $I(x_i, x_j)$ between two variables x_i and x_j to be:

$$I(x_i, x_j) = \sum_{x_i, x_j} P(x_i, x_j) log\left(\frac{P(x_i, x_j)}{P(x_i)P(x_j)}\right)$$

- Key insight: a probability distribution of tree dependence P_t(x) is an optimum approximation to P(x) iff its tree model has maximum weight
- Proof to follow

Proof

$$\begin{split} KL(P,P_t) &= \sum_{\mathbf{x}} P(\mathbf{x}) log P(\mathbf{x}) - \sum_{\mathbf{x}} P(\mathbf{x}) \sum_{i=1}^n log P\left(x_i \middle| x_{\pi(i)}\right) \\ &= \sum_{\mathbf{x}} P(\mathbf{x}) log P(\mathbf{x}) - \sum_{\mathbf{x}} P(\mathbf{x}) \sum_{i=1, \neq root}^n log \frac{P\left(x_i, x_{\pi(i)}\right)}{P\left(x_{\pi(i)}\right)} \\ &= \sum_{\mathbf{x}} P(\mathbf{x}) log P(\mathbf{x}) - \sum_{\mathbf{x}} P(\mathbf{x}) \sum_{i=1, \neq root}^n log \frac{P\left(x_i, x_{\pi(i)}\right)}{P\left(x_i\right) P\left(x_{\pi(i)}\right)} \\ &- \sum_{\mathbf{x}} P(\mathbf{x}) \sum_{i=1}^n log P(x_i) \end{split}$$

13

Proof (continued)

In the same way:

$$\sum_{x} P(x) log \frac{P(x_{i}, x_{\pi(i)})}{P(x_{i})P(x_{\pi(i)})}$$

$$= \sum_{x_{i}, x_{\pi(i)}} P(x_{i}, x_{\pi(i)}) log \frac{P(x_{i}, x_{\pi(i)})}{P(x_{i})P(x_{\pi(i)})} = I(x_{i}, x_{\pi(i)})$$

15

Proof (continued)

Note that: $-\sum_{x} P(x) \log P(x_i) = -\sum_{x_i} P(x_i) \log P(x_i)$

To see this, suppose $x = (x_1, x_2)$, let all variables are binary, let i=1

$$\begin{split} &-\sum_{x} P(x) \log P(x_i) \\ &= -[P(x_1 = 0, x_2 = 0) \log P(x_1 = 0) + P(x_1 = 0, x_2 = 1) \log P(x_1 = 0) + \\ &P(x_1 = 1, x_2 = 0) \log P(x_1 = 1) + P(x_1 = 1, x_2 = 1) \log P(x_1 = 1)] \\ &= -[P(x_1 = 0) \log P(x_1 = 0) + P(x_1 = 1) \log P(x_1 = 1)] \\ &= -\sum_{x} P(x_1) \log P(x_1) = -\sum_{x} P(x_i) \log P(x_i) \end{split}$$

14

Proof (continued)

One more piece of notation:

$$H(x) = -\sum_{x} P(x) log P(x)$$

$$H(x_i) = -\sum_{x} P(x_i) log P(x_i)$$

Substituting the expressions above and from pg 12 into the last line of pg 13:

$$KL(P, P_t) = -\sum_{i=1}^{n} I(x_i, x_{\pi(i)}) + \sum_{i=1}^{n} H(x_i) - H(x)$$

Proof

$$KL(P, P_t) = -\sum_{i=1}^{n} I(x_i, x_{\pi(i)}) + \sum_{i=1}^{n} H(x_i) - H(x)$$

Mutual information is always ≥ 0

Independent of the dependence tree

Minimizing $I(P, P_t)$ is the same as maximizing the total branch weight:

$$\sum_{i=1}^n I(x_i, x_{\pi(i)})$$

Estimation

- But in order to calculate mutual information $I(x_i, x_i)$, you need the probability distribution P(x)
- Need to estimate the mutual information from a finite set of samples using maximum likelihood estimation

19

The algorithm

- First calculate all n(n-1)/2 pairwise mutual information measures
- Use Kruskal's algorithm to construct maximum weight spanning tree:
 - Construct tree one edge at a time, in decreasing order of the weights
 - If all weights are > 0, you get one connected component
 - Running time is O(n²) for n variables because you have to consider all n(n-1)/2 edges

18

Estimation

Suppose you are given s independent samples $x^1, x^2, ..., x^s$ of a discrete variable x. Each sample is an n-component vector ie. $\mathbf{x}^{\mathbf{k}}$ $=(x^{k}_{1}, x^{k}_{2}, ..., x^{k}_{n}).$

Define:

$$n_{uv}(i, j) = \#$$
 of samples with $x_i = u$ and $x_j = v$

$$f_{uv}(i,j) = \frac{n_{uv}(i,j)}{\sum_{u,v} n_{uv}(i,j)}$$
Maximum L
Estimator for P(

Maximum Likelihood Estimator for $P(x_i = u, x_j = v)$

> Maximum Likelihood Estimator for $P(x_i = u)$

Estimation

Calculate:

$$\hat{I}(x_i, x_j) = \sum_{u,v} f_{uv}(i, j) \log \frac{f_{uv}(i, j)}{f_u(i) f_v(j)}$$

Use $\hat{I}(x_i, x_j)$ in Kruskal's algorithm instead of $I(x_i, x_j)$

21

The entire algorithm

- 1. Compute marginal counts $f_u(i)$ and pairwise counts $f_{uv}(i,j)$
- 2. Compute mutual information $\hat{I}(x_i, x_j)$ for all pairs x_i and x_i
- 3. Compute MWST using Kruskal's algorithm. Pick a root, orient edges away from the root.

Steps 1-3 dominate the complexity – they all take O(n²) time

23

The entire algorithm

- 1. Compute marginal counts $f_u(i)$ and pairwise counts $f_{uv}(i,j)$
- 2. Compute mutual information $\hat{I}(x_i, x_j)$ for all pairs x_i and x_i
- 3. Compute MWST using Kruskal's algorithm. Pick a root, orient edges away from the root.
- 4. Set the parameters in the CPTs for each node to be their maximum likelihood estimates:

$$P(x_i | x_{\pi(i)}) = \frac{f_{uv}(i, \pi(j))}{f_u(i)}$$

22

References

- Chow, C. K. and Liu, C. N. "Approximating Discrete Probability Distributions with Dependence Trees".
- Meila-Predoviciu, M. Learning with Mixtures of Trees, PhD Thesis, MIT, 1999.