Monte Carlo Markov Chain 1

1

1

MCMC

Limitations of LW:

- <u>Evidence</u> affects sampling only for nodes that are its descendants
- For nondescendants, the <u>weights</u> account for the effect of the evidence
- If evidence is at the leaves, we are sampling from the prior distribution (and not the posterior which is what we want)

2

MCMC

Strategy used by MCMC

- Generate a <u>sequence</u> of samples
- · Initial samples generated from the prior
- Successive samples generated progressively closer to the posterior

Applies to both directed and undirected models. We'll use a distribution P_Φ defined in terms of a set of factors Φ

3

3

Gibbs Sampling

4

Example: Suppose we have as evidence SAT = High and Letter = Weak (nodes are shaded grey)

Eliminate all rows that are inconsistent with the evidence in all factors (see

pg 111 of textbook)

Factors:

- P(I)
- P(D)
- P(G | I,D)

Reduced Factors:

- P(S=high | I)
- P(L=weak | G)

5

5

Gibbs Sampling

Start with an initial sample eg: $\mathbf{x}^{(0)} = (D = high, I = low, G = B, S = high, L = weak)$

- *D*, *I* and *G* could be set in any way, for instance by forward sampling, to get $D^{(0)} = high$, $I^{(0)} = low$, $G^{(0)} = B$
- S=high and L=weak are observed

6

Resample non-evidence nodes, one at a time, in some order eg. G, I, D.

If we sample X_i, keep other nodes clamped at the values of the current state (D = high, I = low, G = B, S = high, L = weak)

To sample $G^{(1)}$, we compute $P_{\Phi}(G \mid D=high, I=low, S=high, L=weak)$:

```
\begin{split} &P_{\Phi}(G|D = high, I = low, S = high, L = weak) \\ &= \frac{P(I = high)P(D = low)P(G|I = low, D = High)P(L = low|G)P(S = high|I = low)}{\sum_{G}P(I = high)P(D = low)P(G|I = low, D = High)P(L = low|G)P(S = high|I = low)} \\ &= \frac{P(G|I = low, D = high)P(Letter = weak|G)}{\sum_{G}P(G|I = low, D = high)P(Letter = weak|G)} \end{split}
```

7

7

Gibbs Sampling

- Suppose we obtain $G^{(1)} = C$.
- Now sample I⁽¹⁾ from P_Φ(I | D=high, G=C, S=high, L=weak).
 Note it is conditioned on G⁽¹⁾=C
- Say we get I⁽¹⁾=high
- Now sample D⁽¹⁾ from P_{Φ}(D | G=C, I = high, S=high, L=weak). Say you get D⁽¹⁾ = high
- The first iteration of sampling produces x⁽¹⁾ = (I = high, D = high, G = C, S=high, L=weak)
- Iterate...

8

Q

- P_Φ(G | D=high, I=low, S=high, L=weak) takes downstream evidence L=weak into account (makes it closer to the posterior distribution P(X | e))
- Early on, P_Φ(G | D=high, I=low, S=high, L=weak) very much like the prior P(X) because it uses values for I and D sampled from P(X)
- On next iteration, resampling I and D conditioned on new value of G brings the sampling distribution closer to the posterior
- Sampling distribution gets progressively closer and closer to the posterior

9

9

Gibbs Sampling

```
Procedure Gibbs-Sample (
            X
                                       // Set of variables to be sampled
                                      // Set of factors defining P_{\Phi}
             P<sup>(0)</sup>(X), // Initial state distribution
                                      // Number of time steps
        Sample \mathbf{x}^{(0)} from \mathsf{P}^{(0)}(\mathbf{X})
1.
2.
        for t=1, ..., T
3.
           \mathbf{x}^{(t)} \leftarrow \mathbf{x}^{(t-1)}
4.
           for each X_i \in X
5.
              Sample x_i^{(t)} from P_{\Phi}(X_i \mid \mathbf{x}_{-i})
6.
              // Change X<sub>i</sub> in x<sup>(t)</sup>
        return x<sup>(0)</sup>, ..., x<sup>(T)</sup>
7.
```

Gibbs sampling with evidence

- Reduce all factors by the observations **e**
- The distribution P_{Φ} corresponds to P(X|e)

11

11

Markov Chains

12

- (Informally) A Markov chain is a graph of states over which the sampling algorithm takes a random walk
- Note: the graph is not the graphical model but a graph over the possible assignments to a set of variables X

13

13

Markov Chains

- A Markov chain is defined via a state space
 Val(X) and a model that defines, for every state
 x ∈ Val(X) a next-state distribution over Val(X).
- More precisely, the transition model \mathcal{T} specifies for each pair of states x, x' the probability $\mathcal{T}(x \to x')$ of going from x to x'.
- A homogeneous Markov chain is one where the system dynamics do not change over time

Example of a Markov Chain with $Val(X)=\{A,B,C\}$:

State Transition Diagram View

Conditional Probability Distribution View

X _{t-1}	X _t	$P(X_t X_{t-1})$
Α	Α	0.25
Α	В	0
Α	С	0.75
В	Α	0.5
В	В	0.5
В	С	0
С	Α	0.4
С	В	0.6
С	С	0

15

15

Markov Chains

- Random sampling process defines a random sequence of states x⁽⁰⁾, x⁽¹⁾, x⁽²⁾, ...
- **X**^(t) is a random variable:
- Need initial state distribution P⁽⁰⁾(X⁽⁰⁾)
- Probability that next state is x' can be computed as:

$$P^{(t+1)}(X^{(t+1)} = x') = \sum_{x \in Val(X)} P^{(t)}(X^{(t)} = x) \mathcal{T}(x \to x')$$

Sum over all states that the chain could have been at time t

Probability of transition from x to x'

How to generate a Markov Change Monte Carlo trajectory:

```
Procedure MCMC-Sample (
P^{(0)}(\mathbf{X}), \text{ // Initial state distribution}
\mathcal{T}, \text{ // Markov chain transition model}
T \text{ // Number of time steps}
)

1. Sample \mathbf{x}^{(0)} from P^{(0)}(\mathbf{X})

2. for \mathbf{t} = 1, ..., T

3. Sample \mathbf{x}^{(t)} from \mathcal{T}(\mathbf{x}^{(t-1)} \to \mathbf{X})

4. return \mathbf{x}^{(0)}, ..., \mathbf{x}^{(T)}
```

The big question: does P(t) converge and what to?

17

17

Markov Chains

• When the process converges, we expect:

$$P^{(t)}(\mathbf{x}') \approx P^{(t+1)}(\mathbf{x}') = \sum_{\mathbf{x} \in Val(\mathbf{X})} P^{(t)}(\mathbf{x}) \mathcal{T}(\mathbf{x} \to \mathbf{x}')$$

• A distribution $\pi(\mathbf{X})$ is a stationary distribution for a Markov chain \mathcal{T} if it satisfies:

$$\pi(X = x') = \sum_{x \in Val(X)} \pi(X = x) \mathcal{T}(x \to x')$$

A stationary distribution is also called an invariant distribution

Another example:

To find the stationary distribution:

$$\pi(\mathsf{x}_1) = 0.25\pi(\mathsf{x}_1) {+} 0.5\pi(\mathsf{x}_3)$$

$$\pi(x_2) = 0.7\pi(x_2) + 0.5\pi(x_3)$$

$$\pi(\mathsf{x}_3) = 0.75\pi(\mathsf{x}_1) {+} 0.3\pi(\mathsf{x}_2)$$

$$\pi(x_1) + \pi(x_2) + \pi(x_3) = 1$$

Solving these simultaneous equations gives: $\pi(x_1) = 0.2$, $\pi(x_2) = 0.5$, $\pi(x_3) = 0.3$

19

19

Markov Chains

- Bad news: no guarantee that MCMC sampling process converges to a stationary distribution
- Example of a periodic Markov chain (periodic = fixed cyclic behavior)
 - Start with $P^{(0)}(x_1) = 1$
 - $P^{(t)}(x_1) = 1$ if t is even
 - $P^{(t)}(x_2) = 1$ if t is odd

20

- No guarantee that stationary distribution is unique – depends on P⁽⁰⁾
 - This happens if the chain is reducible: has states that are not reachable from each other
- We will restrict our attention to Markov chains that have a stationary distribution which is reached from any starting distribution P⁽⁰⁾

21

21

Markov Chains

- To meet this restriction, we need the chain to be regular
- A Markov chain is said to be regular if there exists some number k such that, for every x, x' ∈ Val(X), the probability of getting from x to x' in exactly k steps is > 0
- Theorem 12.3: If a finite state Markov chain \mathcal{T} is regular, then it has a unique stationary distribution

- Define \mathcal{T}_i to be a transition model called a kernel
- For graphical models, define a kernel \mathcal{T}_i for each variable $X_i \in \mathbf{X}$
- Define X_{-i} = X {X_i} and let x_i denote an instantiation to X_i
- The model T_i takes a state (x_{-i}, x_i) and transitions to a state (x_{-i}, x_i')

23

23

Gibbs Sampling Revisited

How do we use MCMC on a graphical model?

- Want to generate samples from the posterior
 P(X|E=e) where X=X-E
- Define a chain where P(X|e) is the stationary distribution
- States are instantiations x to X E
- Need transition function that converges to stationary distribution P(X|e)
- For convenience: define $P_{\Phi} = P(X|e)$ where the factors in Φ are reduced by the evidence e

25

25

Gibbs Sampling Revisited

Using the MCMC framework, the transition model for Gibbs Sampling is:

$$T_{i}((\mathbf{x}_{-i}, x_{i}) \to (\mathbf{x}_{-i}, x_{i})) = P(x_{i} \mid \mathbf{x}_{-i})$$

And the posterior distribution $P_{\phi}(\mathbf{X}) = P(X|\mathbf{e})$ is a stationary distribution of this process

Gibbs sampling on a Bayesian network is efficient Note: $Pa(x_i)$ = Parents of x_i , $Ch(x_i)$ = Children of x_i

$$\begin{split} &P(X_{i}|x_{1},...,x_{i-1},x_{i+1},x_{n})\\ &=\frac{P(x_{1},...,x_{i-1},x_{i},x_{i+1},x_{n})}{P(x_{1},...,x_{i-1},x_{i+1},x_{n})} = \frac{P(x_{1},...,x_{i-1},x_{i},x_{i+1},x_{n})}{\sum_{x_{i}}P(x_{1},...,x_{i-1},x_{i},x_{i+1},x_{n})} \\ &=\frac{\prod_{j=1}^{n}P(x_{j}|Pa(x_{j}))}{\sum_{x_{i}}\prod_{j=1}^{n}P(x_{j}|Pa(x_{j}))} \\ &=\frac{\prod_{x_{j}\notin\{x_{i},Ch(x_{i})\}}P(x_{j}|Pa(x_{j}))P(x_{i}|Pa(x_{i}))\prod_{x_{k}\in Ch(x_{i})}P(x_{k}|x_{i},other\ parents)}{\prod_{x_{j}\notin\{x_{i},Ch(x_{i})\}}P(x_{j}|Pa(x_{j}))\sum_{x_{i}}P(x_{i}|Pa(x_{i}))\prod_{x_{k}\in Ch(x_{i})}P(x_{k}|x_{i},other\ parents)} \\ &=\frac{P(x_{i}|Pa(x_{i}))\prod_{x_{k}\in Ch(x_{i})}P(x_{k}|x_{i},other\ parents)}{\sum_{x_{i}}P(x_{i}|Pa(x_{i}))\prod_{x_{k}\in Ch(x_{i})}P(x_{k}|x_{i},other\ parents)} \end{split}$$

Depends only on the CPDs of X_i and its children

27

27

Gibbs Sampling Revisited

Student Example revisited:

Define:

 $\mathcal{T}((I,G,D,S=high,L=weak) \rightarrow (I', G, D, S=high, L=weak)) = P(I|G,D,S=high,L=weak)$

Sample from the distribution below:

$$P(I'|G,D,S = high, L = weak)$$

$$= \frac{P(I')P(G|I',D)P(S = high|I')}{\sum_{I''}P(I''=i'')P(G|I''=i'',D)P(S = high|I''=i'')}$$

Block Gibbs Sampling

- Can sample more than a single variable X_i at a time
- Partition X into disjoint blocks of variables $X_1, ..., X_k$
- Then sample $P_{\oplus}(X_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1}, X_{i+1} = x_{i+1}, ..., X_k = x_k)$
- Takes longer range transitions

29

29

Gibbs Sampling Revisited

Example of Block Gibbs Sampling

Intelligence of 4 students

Difficulty of 2 courses

Grades (G_{Intelligence, Difficulty})

- Step t: Sample all of the I variables as a block, given Ds and Gs (since Is are conditionally independent from each other given Ds)
- Step t+1: Sample all of the D variables as a block, given Is and Gs (since Ds are conditionally independent of each other given Is)

Need to compute $P_{\Phi}(X_i \mid X_1 = x_1, ..., X_{i-1} = x_{i-1}, X_{i+1} = x_{i+1}, X_k = x_k)$

- Efficient if variables in each block (eg. I) are independent given the variables outside the block (eg. D)
- In general, full independence is not essential – need some sort of structure to the block-conditional distribution

31

31

Gibbs Sampling Revisited

- Gibbs chain not necessarily regular and may not converge to a unique stationary distribution
- Only guaranteed to be regular if P(X_i | X_{-i}) is positive for every value of X_i
- Theorem 12.4: Let \$\mathcal{H}\$ be a Markov network such that all of the clique potentials are strictly positive. Then the Gibbs-sampling Markov chain is regular.