Monte Carlo Markov Chain 1

MCMC

Limitations of LW:

» Evidence affects sampling only for nodes
that are its descendants

» For nondescendants, the weights account
for the effect of the evidence

 If evidence is at the leaves, we are
sampling from the prior distribution (and
not the posterior which is what we want)

MCMC

Strategy used by MCMC
» Generate a sequence of samples
« Initial samples generated from the prior

» Successive samples generated
progressively closer to the posterior

Applies to both directed and undirected models.

We’ll use a distribution P, defined in terms of a
set of factors ©

Gibbs Sampling




Gibbs Sampling

Example: Suppose we have as evidence SAT = High and
Letter = Weak (nodes are shaded grey)

* P(l)
* P(D)
* P(G|1,D)

Reduced Factors:

Eliminate all rows that are M P(S=high | |)

inconsistent with the

evidence in all factors (see * P(L=weak | G)

pg 111 of textbook) 5

Gibbs Sampling

Start with an initial sample eg: x(@ = (D = high, | = low, G =
B, S = high, L = weak)

* D, I and G could be set in any way, for instance by forward
sampling, to get D@ = high, I = low, G® =B

» S=high and L=weak are observed

Gibbs Sampling

Resample non-evidence nodes,
one at a time, in some order eg.
G, 1, D.

If we sample X;, keep other nodes
clamped at the values of the
current state (D = high, | = low,
G =B, S = high, L = weak)

To sample G, we compute P (G | D=high, I=low, S=high, L=weak):

Py (G|D = high,I = low,S = high, L = weak)

__P( =high)P(D = low)P(G|I = low,D = High)P(L = low|G)P(S = high|l = low)
N ¢ PU = high)P(D = low)P(G|I = low,D = High)P(L = low|G)P(S = high|l = low)
_ P(G|I = low, D = high)P(Letter = weak|G)

" Y6 P(G|I = low, D = high)P(Letter = weak|G)

Gibbs Sampling

.

Suppose we obtain G() = C.

Now sample I from Pyl |
D=high, G=C, S=high, L=weak).
Note it is conditioned on G("=C

Say we get I(M=high

.

Now sample D™ from P4(D |
G=C, | = high, S=high, L=weak).
Say you get D) = high

The first iteration of sampling
produces x" = (I = high, D =
high, G = C, S=high, L=weak)

lterate...




Gibbs Sampling

* P,(G | D=high, I=low,S=high,L=weak) takes
downstream evidence L=weak into account
(r)n)akes it closer to the posterior distribution P(X |
e

* Early on, P,(G | D=high, I=low,S=high,L=weak)
very much like the prior P(X) because it uses
values for I and D sampled from P(X)

* On next iteration, resampling / and D
conditioned on new value of G brings the
sampling distribution closer to the posterior

» Sampling distribution gets progressively closer
and closer to the posterior

NoOohr®N=

Gibbs Sampling

Procedure Gibbs-Sample (

X /I Set of variables to be sampled
(0] /I Set of factors defining P,
PO(X), // Initial state distribution

T /I Number of time steps

)
Sample x© from P©)(X)
fort=1, ..., T
x®) « x(t-1)
for each X, X
Sample x from Py, (X; | x_)
/I Change X; in x®
return x©, ..., x(M
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Gibbs Sampling
Gibbs sampling with evidence
* Reduce all factors by the observations e
+ The distribution P, corresponds to P(X|e)
11

Markov Chains

12




Markov Chains

* (Informally) A Markov chain is a graph of
states over which the sampling algorithm
takes a random walk

* Note: the graph is not the graphical model
but a graph over the possible assignments
to a set of variables X

13

Markov Chains

* A Markov chain is defined via a state space
Val(X) and a model that defines, for every state
x € Val(X) a next-state distribution over Val(X).

+ More precisely, the transition model 7 specifies
for each pair of states x, x’ the probability 7(x —
X’) of going from x to x'.

* A homogeneous Markov chain is one where the
system dynamics do not change over time

Markov Chains
Example of a Markov Chain with Val(X)={A,B,C}:

State Transition Diagram View Conditional Probability Distribution
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Markov Chains

* Random sampling process defines a random
sequence of states x©, x(1), x@, ...

« X is a random variable:

* Need initial state distribution PO)(X©)

* Probability that next state is x’ can be computed
as:

PUN(XU =x)= Y POXY =x)T (x> x")
xel%;X) %[—/
%/—/ 7

Sum over all states that the ChaiV’ Probability of transition from x to X’
could have been at time t 16
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Markov Chains

How to generate a Markov Change Monte Carlo trajectory:

Procedure MCMC-Sample (
PO(X), // Initial state distribution
T, /I Markov chain transition model
T /I Number of time steps
)
1 Sample x© from P©O)}(X)
2 fort=1,...,T
3. Sample x® from T(x*1 — X)
4. returnx©, ..., xM

The big question: does P converge and what to?
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Markov Chains

Another example:

To find the stationary distribution:
n(x;) = 0.25n(x,)+0.57(x3)

0.25 07
' ‘ 7(Xy) = 0.77(Xp)*+0.5m(x3)
° ° 7(%5) = 0.75m(x,)+0.37(x,)
m(Xq) + m(Xp) + 7(Xz) = 1
0.75 03
' Solving these simultaneous equations
° gives: n(x;) = 0.2, ©(x,) = 0.5, w(x;) =

0.3

Markov Chains

* When the process converges, we expect:
PO(x)~ P (x)= Y Px)T (x> x")
xeVal(X)

» A distribution n(X) is a stationary distribution for
a Markov chain T if it satisfies:

r(X=x'")= Zﬂ(X =x)T (x > x')
xeVal(X)

» A stationary distribution is also called an
invariant distribution
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Markov Chains

+ Bad news: no guarantee that MCMC sampling process
converges to a stationary distribution
» Example of a periodic Markov chain (periodic = fixed
cyclic behavior)
— Start with P@(x;) = 1
- PO(x) =1iftis even

1.0
- P®(x,) =1iftis odd

1.0 %
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Markov Chains

* No guarantee that stationary distribution is
unique — depends on P©
— This happens if the chain is reducible: has
states that are not reachable from each other
» We will restrict our attention to Markov
chains that have a stationary distribution
which is reached from any starting
distribution P©
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Markov Chains

* To meet this restriction, we need the chain
to be regular

» A Markov chain is said to be regular if
there exists some number k such that, for
every x, X’ € Val(X), the probability of
getting from x to x’ in exactly k steps is > 0

» Theorem 12.3: If a finite state Markov
chain T'is regular, then it has a unique
stationary distribution

22
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Markov Chains

- Define 7, to be a transition model called a
kernel

- For graphical models, define a kernel T;
for each variable X; e X

+ Define X; = X — {X} and let x; denote an
instantiation to X;

« The model 7, takes a state (x, x;) and
transitions to a state (x;, x;)

- 2
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Gibbs Sampling Revisited

24

23

24




Gibbs Sampling Revisited

How do we use MCMC on a graphical model?

» Want to generate samples from the posterior
P(X|E=e) where X=X"- E

» Define a chain where P(X]e) is the stationary
distribution

+ States are instantiations xto X - E

* Need transition function that converges to
stationary distribution P(X|e)

+ For convenience: define P, = P(X|e) where the
factors in @ are reduced by the evidence e
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Gibbs Sampling Revisited

Gibbs sampling on a Bayesian network is efficient
Note: Pa(x;) = Parents of x;, Ch(x;) = Children of x;
PQXi|%1, woe) Xim1, X1, X0)
POy e X X X1, %) P(Ry e, Xm0, X Xig 1, Xn)
TP e X, X1, ) Dy POX0 s X, Xy X, X))
NS
2 IT=1 P(35]Pa(;))
Hx,-e{xi,ch(xi)} P(xj|Pa(x;))P(x;|Pa(x;)) kaech(xi) P(xy|x;, other parents)

- Hx]-e{xi.Ch(xi)} P(xj |Pa(xj)) 2 P(xilPa(x;)) HXkECh(xl-) P(xy|x;, other parents)
P(x;|Pa(x;)) kaech(xi) P(xy|x;, other parents)
T Xy, P(xilPa(xy)) kaech(xi) P(xy|x;, other parents)

Depends only on the
CPDs of X, and its children o

Gibbs Sampling Revisited

Using the MCMC framework, the transition
model for Gibbs Sampling is:

Z((x—iaxi) - (x—i7x1")) = P(x; | x;)

And the posterior distribution P (X) = P(X|e)
is a stationary distribution of this process
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Gibbs Sampling Revisited

Student Example revisited:

Define:

7((1,G,D,S=high,L=weak) — (I’, G, D,
S=high, L=weak)) =
P(I|G,D,S=high,L=weak)

Sample from the distribution below:

P(I'\G,D,S = high, L = weak)

B PUI"P(G|I',D)P(S = high|I")
ZP(["zi")P(G | 1"=i",D)P(S = high|I"=i")
T
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Gibbs Sampling Revisited

Block Gibbs Sampling

+ Can sample more than a single variable X;
at a time

+ Partition X into disjoint blocks of variables
Xy o X

» Then sample P,(X; | X;=X4, ..., X;.;=X;.4,
Xis1=Xis1s -y Xi=X)

» Takes longer range transitions
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Gibbs Sampling Revisited

Example of Block Gibbs Sampling

Intelligence of 4 students

Difficulty of 2 courses

» Step t: Sample all of the | variables as a block, given Ds and Gs
(since Is are conditionally independent from each other given Ds)

» Step t+1: Sample all of the D variables as a block, given Is and Gs
(since Ds are conditionally independent of each other given Is) 30
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Gibbs Sampling Revisited

Need to compute P, X; | X,;=x4, ..., X_,=X,4,
Xis1=Xiv1, Xic = Xy)

« Efficient if variables in each block (eg. )
are independent given the variables
outside the block (eg. D)

* In general, full independence is not
essential — need some sort of structure to
the block-conditional distribution
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Gibbs Sampling Revisited

» Gibbs chain not necessarily regular and
may not converge to a unique stationary
distribution

* Only guaranteed to be regular if P( X;| X ;)
is positive for every value of X;

« Theorem 12.4: Let H be a Markov
network such that all of the clique
potentials are strictly positive. Then the
Gibbs-sampling Markov chain is regular.
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