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Monte Carlo Markov Chain 1

MCMC

Limitations of LW:
• Evidence affects sampling only for nodes 

that are its descendants
• For nondescendants, the weights account 

for the effect of the evidence
• If evidence is at the leaves, we are 

sampling from the prior distribution (and 
not the posterior which is what we want)
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MCMC

Strategy used by MCMC
• Generate a sequence of samples
• Initial samples generated from the prior
• Successive samples generated 

progressively closer to the posterior

Applies to both directed and undirected models. 
We’ll use a distribution P defined in terms of a 
set of factors 
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Gibbs Sampling
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Gibbs Sampling

Intelligence

Grade SAT

Difficulty

Letter

Example: Suppose we have as evidence SAT = High and
Letter = Weak (nodes are shaded grey)

Factors: 

• P(I)

• P(D)

• P(G | I,D)

Reduced Factors:

• P(S=high | I)

• P(L=weak | G)
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Eliminate all rows that are 
inconsistent with the 
evidence in all factors (see 
pg 111 of textbook)

Gibbs Sampling
Intelligence

Grade SAT

Difficulty

Letter

Start with an initial sample eg: x(0) = (D = high, I = low, G = 
B, S = high, L = weak)

• D, I and G could be set in any way, for instance by forward 
sampling, to get D(0) = high, I(0) = low, G(0) = B

• S=high and L=weak are observed
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Gibbs Sampling
Intelligence

Grade SAT

Difficulty

Letter

Resample non-evidence nodes, 
one at a time, in some order eg. 
G, I, D.

If we sample Xi, keep other nodes 
clamped at the values of the 
current state (D = high, I = low, 
G = B, S = high, L = weak)

To sample G(1), we compute P(G | D=high, I=low, S=high, L=weak):

஍ܲሺܦ|ܩ ൌ ݄݄݅݃, ܫ ൌ ,ݓ݋݈ ܵ ൌ ݄݄݅݃, ܮ ൌ ሻ݇ܽ݁ݓ

ൌ
ܲሺܫ ൌ ݄݄݅݃ሻܲሺܦ ൌ ܫ|ܩሻܲሺݓ݋݈ ൌ ܦ,ݓ݋݈ ൌ ܮሻܲሺ݄݃݅ܪ ൌ ሻܲሺܵܩ|ݓ݋݈ ൌ ܫ|݄݄݃݅ ൌ ሻݓ݋݈

∑ ܲሺܫ ൌ ݄݄݅݃ሻܲሺܦ ൌ ܫ|ܩሻܲሺݓ݋݈ ൌ ܦ,ݓ݋݈ ൌ ܮሻܲሺ݄݃݅ܪ ൌ ሻܲሺܵܩ|ݓ݋݈ ൌ ܫ|݄݄݃݅ ൌ ሻீݓ݋݈

ൌ
ܲሺܫ|ܩ ൌ ܦ,ݓ݋݈ ൌ ݄݄݅݃ሻܲሺݎ݁ݐݐ݁ܮ ൌ ሻܩ|݇ܽ݁ݓ

∑ ܲሺܫ|ܩ ൌ ܦ,ݓ݋݈ ൌ ݄݄݅݃ሻܲሺݎ݁ݐݐ݁ܮ ൌ ሻீܩ|݇ܽ݁ݓ
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Gibbs Sampling
Intelligence

Grade SAT

Difficulty

Letter

• Suppose we obtain G(1) = C.

• Now sample I(1) from P(I | 
D=high, G=C, S=high, L=weak). 
Note it is conditioned on G(1)=C

• Say we get I(1)=high

• Now sample D(1) from P(D | 
G=C, I = high, S=high, L=weak). 
Say you get D(1) = high

• The first iteration of sampling 
produces x(1) = (I = high, D = 
high, G = C, S=high, L=weak)

• Iterate...

8

5 6

7 8



3

Gibbs Sampling
• P(G | D=high, I=low,S=high,L=weak) takes 

downstream evidence L=weak into account 
(makes it closer to the posterior distribution P(X | 
e))

• Early on, P(G | D=high, I=low,S=high,L=weak)
very much like the prior P(X) because it uses 
values for I and D sampled from P(X)

• On next iteration, resampling I and D
conditioned on new value of G brings the 
sampling distribution closer to the posterior

• Sampling distribution gets progressively closer 
and closer to the posterior

9

Gibbs Sampling
Procedure Gibbs-Sample (
X // Set of variables to be sampled
 // Set of factors defining P

P(0)(X), // Initial state distribution
T // Number of time steps

)
1. Sample x(0) from P(0)(X)
2. for t=1, ..., T
3. x(t)  x(t-1)

4. for each Xi X
5. Sample xi

(t) from P(Xi | x-i)
6. // Change Xi in x(t)

7. return x(0), ..., x(T)
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Gibbs Sampling

Gibbs sampling with evidence
• Reduce all factors by the observations e
• The distribution P corresponds to P(X|e)
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Markov Chains
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Markov Chains

• (Informally) A Markov chain is a graph of 
states over which the sampling algorithm 
takes a random walk

• Note: the graph is not the graphical model 
but a graph over the possible assignments 
to a set of variables X
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Markov Chains

• A Markov chain is defined via a state space 
Val(X) and a model that defines, for every state 
x  Val(X) a next-state distribution over Val(X). 

• More precisely, the transition model T specifies 
for each pair of states x, x’ the probability T(x 
x’) of going from x to x’. 

• A homogeneous Markov chain is one where the 
system dynamics do not change over time
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Markov Chains
Example of a Markov Chain with Val(X)={A,B,C}:

A

B C

0.5

0.5

0.25

0.75

0.6

0.4

Xt-1 Xt P(Xt|Xt-1)
A A 0.25
A B 0
A C 0.75
B A 0.5
B B 0.5
B C 0
C A 0.4
C B 0.6
C C 0

State Transition Diagram View Conditional Probability Distribution 
View
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Markov Chains

• Random sampling process defines a random 
sequence of states x(0), x(1), x(2), …

• X(t) is a random variable: 
• Need initial state distribution P(0)(X(0))
• Probability that next state is x’ can be computed 

as:




 
)(

)()()1()1( )'()()'(
Xx

xxxXxX
Val

tttt PP T

Sum over all states that the chain 
could have been at time t

Probability of transition from x to x’
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Markov Chains

Procedure MCMC-Sample (
P(0)(X), // Initial state distribution
T, // Markov chain transition model
T // Number of time steps

)
1. Sample x(0) from P(0)(X)
2. for t = 1, …, T
3. Sample x(t) from T(x(t-1)  X)
4. return x(0), …, x(T)

How to generate a Markov Change Monte Carlo trajectory:

The big question: does P(t) converge and what to?
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Markov Chains

• When the process converges, we expect:

• A distribution (X) is a stationary distribution for 
a Markov chain T if it satisfies:

• A stationary distribution is also called an 
invariant distribution




 
)(

)()1()( )'()()'()'(
Xx

xxxxx
Val

ttt PPP T





)(

)'()()'(
Xx

xxxXxX
Val

T
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Markov Chains

Another example:

X1 X2

X3

0.25

0.75 0.5 0.5

0.7

0.3

To find the stationary distribution:

(x1) = 0.25(x1)+0.5(x3)

(x2) = 0.7(x2)+0.5(x3)

(x3) = 0.75(x1)+0.3(x2)

(x1) + (x2) + (x3) = 1

Solving these simultaneous equations 
gives: (x1) = 0.2, (x2) = 0.5, (x3) = 
0.3
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Markov Chains
• Bad news: no guarantee that MCMC sampling process 

converges to a stationary distribution
• Example of a periodic Markov chain (periodic = fixed 

cyclic behavior)
– Start with ܲ ଴ ଵݔ ൌ 1
– ܲ ௧ ଵݔ ൌ 1 if t is even
– ܲ ௧ ଶݔ ൌ 1 if t is odd

X1 X2

1.0

1.0 20

17 18

19 20
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Markov Chains

• No guarantee that stationary distribution is 
unique – depends on P(0)

– This happens if the chain is reducible: has 
states that are not reachable from each other

• We will restrict our attention to Markov 
chains that have a stationary distribution 
which is reached from any starting 
distribution P(0)

21

Markov Chains

• To meet this restriction, we need the chain 
to be regular

• A Markov chain is said to be regular if 
there exists some number k such that, for 
every x, x’  Val(X), the probability of 
getting from x to x’ in exactly k steps is > 0

• Theorem 12.3: If a finite state Markov 
chain T is regular, then it has a unique 
stationary distribution
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Markov Chains

• Define Ti to be a transition model called a 
kernel

• For graphical models, define a kernel Ti
for each variable Xi  X

• Define X-i = X – {Xi} and let xi denote an 
instantiation to Xi

• The model Ti takes a state (x-i, xi) and 
transitions to a state (x-i, xi’)

23

Gibbs Sampling Revisited

24
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23 24
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Gibbs Sampling Revisited
How do we use MCMC on a graphical model?
• Want to generate samples from the posterior 

P(X|E=e) where X=X - E
• Define a chain where P(X|e) is the stationary 

distribution
• States are instantiations x to X – E
• Need transition function that converges to 

stationary distribution P(X|e)
• For convenience: define P = P(X|e) where the 

factors in  are reduced by the evidence e
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Gibbs Sampling Revisited

Using the MCMC framework, the transition 
model for Gibbs Sampling is:

And the posterior distribution P(X) = P(X|e)
is a stationary distribution of this process

)|()),(),(( ''
iii xxx   iiii xPxxT

26

Gibbs Sampling Revisited

Depends only on the 
CPDs of Xi and its children 27

ܲ ௜ܺ ,ଵݔ … , ,௜ିଵݔ ,௜ାଵݔ ௡ݔ
ൌ
ܲ ,ଵݔ … , ,௜ିଵݔ ௜ݔ , ,௜ାଵݔ ௡ݔ
ܲ ,ଵݔ … , ,௜ିଵݔ ,௜ାଵݔ ௡ݔ

ൌ
ܲ ,ଵݔ … , ,௜ିଵݔ ௜ݔ , ,௜ାଵݔ ௡ݔ

∑ ܲ ,ଵݔ … , ,௜ିଵݔ ௜ݔ , ,௜ାଵݔ ௡௫೔ݔ

ൌ
∏ ܲ ௝ݔ ܲܽ ௝௡ݔ
௝ୀଵ

∑ ∏ ܲ ௝ݔ ܲܽ ௝௡ݔ
௝ୀଵ௫೔

ൌ
∏ ܲ ௝ݔ ܲܽ ௝ݔ ܲ ௜ݔ ܲܽ ௜௫ೕ∉ሼ௫೔,஼௛ሺ௫೔ሻሽݔ ∏ ܲ ௞ݔ ௜ݔ , ௫ೖ∈಴೓ݏݐ݊݁ݎܽ݌	ݎ݄݁ݐ݋ ೣ೔

∏ ܲ ௝ݔ ܲܽ ∌௝௫ೕݔ ௫೔,஼௛ ௫೔
∑ ܲ ௜ݔ ܲܽ ௜ݔ ∏ ܲ ௞ݔ ௜ݔ , ௫ೖ∈಴೓ݏݐ݊݁ݎܽ݌	ݎ݄݁ݐ݋ ೣ೔
௫೔

ൌ
ܲሺݔ௜|ܲܽ ௜ݔ ሻ∏ ܲሺݔ௞|ݔ௜ , ሻ௫ೖ∈಴೓ሺೣ೔ሻݏݐ݊݁ݎܽ݌	ݎ݄݁ݐ݋

∑ ܲ ௜ݔ ܲܽ ௜ݔ ∏ ܲ ௞ݔ ௜ݔ , ௫ೖ∈಴೓ݏݐ݊݁ݎܽ݌	ݎ݄݁ݐ݋ ೣ೔
௫೔

Gibbs sampling on a Bayesian network is efficient
Note: ܲܽሺݔ௜ሻ = Parents of ݔ௜, ݄ܥሺݔ௜ሻ = Children of ݔ௜

Gibbs Sampling Revisited
Intelligence

Grade SAT

Difficulty

Letter

Student Example revisited:

Define:

T((I,G,D,S=high,L=weak) → (I’, G, D, 
S=high, L=weak)) = 
P(I|G,D,S=high,L=weak)

Sample from the distribution below:

 






''

)''''|(),''''|()''''(
)'|(),'|()'(

),,,|'(

I

iIhighSPDiIGPiIP
IhighSPDIGPIP

weakLhighSDGIP
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Gibbs Sampling Revisited

Block Gibbs Sampling
• Can sample more than a single variable Xi

at a time
• Partition X into disjoint blocks of variables 
X1, ..., Xk

• Then sample P(Xi | X1=x1, ..., Xi-1=xi-1, 
Xi+1=xi+1, ..., Xk=xk)

• Takes longer range transitions
29

Gibbs Sampling Revisited

I1 I2 I3 I4

G1,1 G2,2 G3,1 G3,2 G4,2

D1 D2

Example of Block Gibbs Sampling

Intelligence of 4 students Difficulty of 2 courses

Grades (GIntelligence, Difficulty)

• Step t: Sample all of the I variables as a block, given Ds and Gs 
(since Is are conditionally independent from each other given Ds)

• Step t+1: Sample all of the D variables as a block, given Is and Gs 
(since Ds are conditionally independent of each other given Is) 30

Gibbs Sampling Revisited

Need to compute P(Xi | X1=x1, ..., Xi-1=xi-1, 
Xi+1=xi+1, Xk = xk)

• Efficient if variables in each block (eg. I) 
are independent given the variables 
outside the block (eg. D)

• In general, full independence is not 
essential – need some sort of structure to 
the block-conditional distribution
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Gibbs Sampling Revisited

• Gibbs chain not necessarily regular and 
may not converge to a unique stationary 
distribution

• Only guaranteed to be regular if P( Xi | X-i )
is positive for every value of Xi

• Theorem 12.4: Let H be a Markov 
network such that all of the clique 
potentials are strictly positive. Then the 
Gibbs-sampling Markov chain is regular.
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