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Monte Carlo Markov Chain 2

MCMC

Problems with Gibbs Sampling:
• What if P(Xi|x-i) is not easy to sample from 

eg. in some continuous models?
• Gibbs chain involves changing one 

variable at a time. 
• What if you need larger steps in the state 

space?
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MCMC
• A finite-state Markov chain T is reversible if 

there exists a unique distribution  such that, for 
all x, x’  Val(X):

• This equation is called the detailed balance
• Proposition 12.3: If T is regular and it satisfies 

the detailed balance equation relative to , then 
 is the unique stationary distribution of T
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MCMC
Metropolis-Hastings Algorithm
• General construction that lets us build a 

reversible Markov chain with a particular 
stationary distribution

• Can’t sample directly from target distribution for 
next state

• Uses a proposal distribution to generate next-
state sample

• Corrects for proposal distribution by choosing to 
accept the proposed transition with some 
probability
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MCMC

• Proposal distribution TQ: 
– transition model from state x to x’
– accept and transition to x’ or stay at x

• Acceptance probability A(x→x’)
• The actual transition model is:
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MCMC

• Choice of proposal distribution can be 
arbitrary as long as it induces a regular 
chain

• A simple choice in discrete factored  state 
spaces is to use a transition model Ti

Q

which is uniform distribution over the 
values of Xi
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MCMC
Given a transition model:

The detailed balance equations assert that for all x  x’

And the acceptance probabilities satisfy:
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MCMC

Let TQ be any proposal distribution, and 
consider the Markov chain defined by the 
transition model (on previous slide) and 
acceptance probability (on previous slide).

If this Markov chain is regular, then it has 
the stationary distribution 
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MCMC
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Example of Metropolis-Hastings

Use the stationary distribution:

’(x1) = 0.2

’(x2) = 0.5

’(x3) = 0.3

→ min 1,
T →
T → min 1,

0.3 0.5
0.2 0.75 1

→ min 1,
T →
T → min 1,

0.2 0.75
0.3 0.5 1

Example of acceptance probabilities

Proposal distribution
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MCMC

MCMC for graphical models
• Each local transition model Ti is defined via an 

associated proposal distribution
• The acceptance probability for this chain is: 
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MCMC

Note that for graphical models:

In the case of Gibbs sampling (which is a special 
case of Metropolis-Hastings):
Define Ui = MarkovBlanket(Xi) and 
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Assign the values of the 
evidence variables in 
to the nodes 

Using a Markov Chain
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Using a Markov Chain

How do you use a Markov chain?
• Run chain till it converges to stationary 

distribution 
• Repeatedly sample from  to produce 

dataset D
• Estimate probability from D

But how do you know you are at the 
stationary distribution?
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Using a Markov Chain

• Burn-in time T: the number of steps we 
take until we collect a sample from the 
chain

• Want T such that the Markov chain is 
close to the stationary distribution
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Using a Markov Chain

The variational distance Dvar is defined as follows. Let P
and Q be probability distributions defined over an event 
space S. Then

Let T be a Markov chain. Let T be the minimal T such that, 
for any starting distribution P(0), we have that:

Then T is called the -mixing time of T.
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Using a Markov Chain

• The mixing time can be very long!
• This happens when the state space looks 

like islands that are:
– well-connected within the islands 
– but have low probability transitions between

islands
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Using a Markov Chain
• Let T be a Markov chain transition model and 

its stationary distribution. 
• The conductance of T is defined as follows:

• Where 
– (S) = probability assigned by the stationary 

distribution to the set of states S
– SC = Val(X) – S
–

2/1)(0    where,
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Using a Markov Chain

• Intuitively, P(S→SC) is the total “bandwidth” for 
transitioning from S to SC

• If conductance is low, if you are in some states 
S, it is very hard to transition out of S
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Low Probability 
Transitions
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Using a Markov Chain

• In graphical models, chains with low 
conductance most common in networks with 
deterministic or highly skewed parameterization

• Deterministic CPDs might lead to disconnected 
state spaces (a reducible chain)

• With positive distributions, might still have 
regions connected only by very low-probability 
transitions
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Using Markov Chains

How do we obtain the -mixing time of a 
Markov chain?

• In general, it’s hard! Need to use heuristics
• Burn-in time is usually quite long
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Collecting Samples
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Collecting Samples

• Let t = 0,...,T be the burn-in phase
• Let D = {x(T+1),...,x(T+M)} be M samples collected 

from stationary distribution 
– Note that if x(T+1) is from  then so are all M

samples above
• If the chain has mixed, then for any function f, 

the following is an unbiased estimator for 
E(X)[f(X,e)]:
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Collecting Samples
Theorem 12.6: Let T be a Markov chain and X[1], 

..., X[M] a set of samples collected from T at its 
stationary distribution P. Then, since M→

where
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Autocovariance terms (due to correlated samples) 23

Collecting Samples

How do we use Theorem 12.6? 
• Need to estimate variance from samples:

• Need to estimate autocovariance terms:
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Collecting Samples
How can we tell if the chain has mixed?
• Method 1: compute autocorrelation of lag l

• Autocorrelation should drop off exponentially 
with the length of the lag

• If you see high autocorrelation at distant lags, 
you have a poorly mixing chain

• Note: with large lags, you need more samples to 
estimate autocorrelation (otherwise you have 
large variance)
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Collecting Samples

How can we tell if the chain has mixed?
• Method 2: Use multiple chains sampling 

the same distribution
• Suppose you have K chains run for T+M

steps with different starting states
• Throw away the first T samples 
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Collecting Samples

• Let Xk[m] denote a sample from chain k
after iteration T+m

• Compute the following:
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Within-chain variance 27

Collecting Samples

• The following value V overestimates the 
variance of our estimate f based on the samples

• In the limit of M→, W and V converge to the 
true variance of the estimate

• Can use the following as a measure of 
disagreement between chains:
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W
VR ˆ If equal to 1, all the chains have converged to 

either the true distribution or the same mode
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Collecting Samples

Hybrid approach:
• Run small number of chains in parallel for 

a long time, diagnosing their behavior for 
mixing

• After burn-in phase, use multiple chains to 
estimate convergence and to generate 
multiple particles
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Collecting Samples
Problems with MCMC methods
• Lots of hand-tuning: 

– Choosing proposal distribution
– # of chains to run
– Metrics for evaluating mixing
– Lag between samples
– Ways of making long-range moves in state space (eg. 

simulated annealing, block Gibbs sampling)
– etc.

• This is more art than science!
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