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Approximate Inference 1 
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Forward Sampling

• This section on approximate inference 
relies on samples / particles

• Full particles: complete assignment to all 
network variables eg. (X1 = x1, X2 = x2, ..., 
XN = xN)
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Forward Sampling

• Topological sort or order: An ordering of the nodes in the 
DAG where X comes before Y in the ordering if there is a 
directed path from X to Y in the graph.

• A topological order is equivalent to a partial order on the 
nodes of the graph

• There may be several topological orderings

A

C

B

D

Examples of Topological orders:

A,B,C,D

B,A,C,D
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Forward Sampling

Intelligence

Grade SAT

Difficulty

Letter

D P(D)

low 0.6

high 0.4

I P(I)

low 0.7

high 0.3

I S P(S|I)

low low 0.95

low high 0.05

high low 0.2

high high 0.8

G L P(L|G)

C weak 0.99

C strong 0.01

B weak 0.4

B strong 0.6

A weak 0.1

A strong 0.9

D I G P(G|D,I)

low low C 0.3

low low B 0.4

low low A 0.3

low high C 0.02

low high B 0.08

low high A 0.9

high low C 0.7

high low B 0.25

high low A 0.05

high high C 0.2

high high B 0.3

high high A 0.5

Student Example
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Forward Sampling

Intelligence

Grade SAT

Difficulty

Letter

Topological ordering: D, I, G, S, L

1. Sample D from P(D) (Say you get 
D=high)

2. Sample I from P(I) (Say you get I=low)

3. Sample G from P(G|I=low,D=high) 
(Say you get G=C)

4. Sample S from P(S|I=low) (Say you 
get S=low)

5. Sample L from P(L|G=C) (Say you get 
L=weak)

You now have a sample (D=high, I=low, 
G=C, S=low, L=weak)
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Forward Sampling

Suppose you want to calculate P( X1= x1, X2= x2, …, Xn= xn ) using 
forward sampling on a Bayesian network.  The algorithm:

1. Do a topological sort of the nodes in the Bayesian network. 

2. For j = 1 to NUM_SAMPLES
For each node i in the ordering (starting from the top of the 
Bayesian network down)

Sample the value      from the distribution P( Xi | Parents(Xi))
Add                        to your collection of samples

3. Let
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Forward Sampling

• How do you sample from P(Xi | 
Parents(Xi))?

• Note: P( Xi | Parents(Xi)) is a multinomial 
distribution P(xi

1, ..., xi
k | 1, ..., k)?
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Forward Sampling

How do you sample from a multinomial distribution P(xi
1, ..., 

xi
k | 1, ..., k)?

• Generate a sample s uniformly from [0,1]

• Partition interval into k subintervals: [0, 1), [1, 1+2), ...

• More generally, the ith interval is

• If s is in the ith interval, the sample value is xi.

• Use binary search to find the interval for s in time O(log 
k)
















i

j
j

i

j
j

1

1

1

, 



5

9

Forward Sampling

Suppose your list of samples 
looks like the following table:

D I G S L

low low B low weak

low high A high strong

low high A high weak

high high A high strong

high low C low weak

P(I=high) = 3/5 = 0.6

Note that this value becomes a lot more accurate as the number of 
samples heads to infinity.
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Forward Sampling

• From a set of particles D = {[1], ..., [M]}, 
we can estimate the expectation of any 
function f as:

• To estimate P(y)
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This is the values of the variables 
in Y in the particle [m]
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Forward Sampling

Define

• M = total # of particles generated
• n = |X|

• p = maxi |PaXi|

• d = maxi |Val(Xi)|

Overall cost of sampling is O(M n p log(d))

• To get the CPD entry for X given PaX, it costs O(p)

• Sampling process for P(X|PaX) costs O(log(d))
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Forward Sampling

How accurate is this estimate? Using the 
Hoeffding bound:

How many samples are required to achieve an 
estimate whose error is bounded by , with 
probability at least (1-)? Setting
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Forward Sampling

How accurate is this estimate? Using the Chernoff 
bound:

How many samples are required to achieve an 
estimate whose error is bounded by , with 
probability at least (1-)? 
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Note: This requires us to know P(y)
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Rejection Sampling
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Rejection Sampling

What if we want to estimate P(y|E=e)?

• Rejection sampling: do forward sampling but 
throw out samples where Ee

D I G S L

low low B low weak

low high A high strong

low high A high weak

high high A high strong

high low C low weak

Example:

P(I=high|L=weak) = 1/3
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Rejection Sampling

What if the evidence E=e is very very rare?
• For example, if P(e) = 0.001, then for 

10,000 samples, we get 10 unrejected 
samples

• To obtain at least M* unrejected samples, 
we need to generate on average M = 
M*/P(e) samples

• If evidence is rare, we end up generating a 
lot of samples which wastes time
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Rejection Sampling

Bad news: 
– Rare evidence is the norm!

– As # of evidence variables k = |E| grows, the 
probability of the evidence decreases 
exponentially with k

Need something better than rejection 
sampling!
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Likelihood Weighting
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Likelihood Weighting

Intuition: Weight samples according to 
probability of the evidence

Intelligence

SAT

I P(I)

low 0.7

high 0.3

I S P(S|I)

low low 0.95

low high 0.05

high low 0.2

high high 0.8

Drawing I = high and S = high 
should be 80% of a sample

Drawing I = low and S = high 
should be 5% of a sample
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Likelihood Weighting

Weighted particles:

Estimate:
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Likelihood Weighting

Procedure LW-Sample(
, // Bayesian network over X
Z=z // Event in the network

)
1. Let X1, …, Xn be a topological ordering of X
2. w  1
3. for i = 1, …, n
4. ui  x<PaXi> // Assignment to PaXi in x1, …, xi-1

5. if Xi Z then
6. Sample xi from P(Xi | ui)
7. else
8. xi  z<Xi> // Assignment to Xi in z
9. w  w  P(xi | ui) // Multiply weight by probability of desired value
10. return (x1, …, xn), w


