Approximate Inference 1

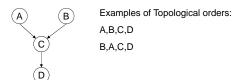
Forward Sampling

- This section on approximate inference relies on samples / particles
- Full particles: complete assignment to all network variables eg. (X₁ = x₁, X₂ = x₂, ..., X_N = x_N)

2

Forward Sampling

- Topological sort or order: An ordering of the nodes in the DAG where X comes before Y in the ordering if there is a directed path from X to Y in the graph.
- A topological order is equivalent to a partial order on the nodes of the graph
- There may be several topological orderings

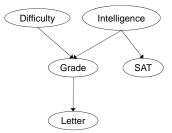


3

Forward Sampling Student Example 0.7 D P(D) low 0.6 high 0.4 G P(G|D,I) Difficulty Intelligence high C 0.3 low B 0.4 0.8 C 0.02 Grade 0.99 C strong 0.01 B strong 0.6 0.1 weak Letter high C 0.2 A strong 0.9 high B 0.3 high high A 0.5

Forward Sampling

Topological ordering: D, I, G, S, L



- Sample D from P(D) (Say you get D=high)
- 2. Sample I from P(I) (Say you get I=low)
- 3. Sample G from P(G|I=low,D=high) (Say you get G=C)
- Sample S from P(S|I=low) (Say you get S=low)
- 5. Sample L from P(L|G=C) (Say you get L=weak)

You now have a sample (D=high, I=low, G=C, S=low, L=weak)

Forward Sampling

Suppose you want to calculate $P(X_1 = X_1, X_2 = X_2, ..., X_n = X_n)$ using forward sampling on a Bayesian network. The algorithm:

- 1. Do a topological sort of the nodes in the Bayesian network.
- 2. For j = 1 to $NUM_SAMPLES$

For each node *i* in the ordering (starting from the top of the Bayesian network down)

Sample the value \hat{x}_i from the distribution $P(X_i \mid Parents(X_i))$ Add $\{\hat{x}_1, \hat{x}_2, ..., \hat{x}_n\}$ to your collection of samples

3. Let
$$P(X_1 = x_1, X_2 = x_2,..., X_n = x_n)$$

$$\approx \frac{\text{# of samples with } X_1 = x_1, X_2 = x_2,..., X_n = x_n}{NUM _SAMPLES}$$

6

Forward Sampling

- How do you sample from P(X_i | Parents(X_i))?
- Note: $P(X_i | Parents(X_i))$ is a multinomial distribution $P(x_i^1, ..., x_i^k | \theta_1, ..., \theta_k)$?

7

Forward Sampling

How do you sample from a multinomial distribution $P(x_i^1, ..., x_i^k \mid \theta_1, ..., \theta_k)$?

- Generate a sample s uniformly from [0,1]
- Partition interval into k subintervals: $[0, \theta_1), [\theta_1, \theta_1 + \theta_2), ...$
- More generally, the ith interval is

$$\left[\sum_{j=1}^{i-1} heta_j,\sum_{j=1}^{i} heta_j
ight]$$

- If s is in the ith interval, the sample value is x_i .
- Use binary search to find the interval for s in time O(log k)

Forward Sampling

Suppose your list of samples looks like the following table:

D	I	G	S	L
low	low	В	low	weak
low	high	Α	high	strong
low	high	Α	high	weak
high	high	Α	high	strong
high	low	С	low	weak

P(I=high) = 3/5 = 0.6

Note that this value becomes a lot more accurate as the number of samples heads to infinity.

9

Forward Sampling

• From a set of particles $D = \{\xi[1], ..., \xi[M]\}$, we can estimate the expectation of any function f as:

$$\hat{E}_D(f) = \frac{1}{M} \sum_{m=1}^{M} f(\xi[m])$$

• To estimate P(y)

$$\hat{P}_D(y) = \frac{1}{M} \sum_{m=1}^{M} I\{y[m] = y\}$$
This is the values of the varion Y in the particle $\xi[m]$

10

Forward Sampling

Define

- *M* = total # of particles generated
- $n = |\mathcal{X}|$
- $p = \max_i |Pa_{xi}|$
- $d = \max_{i} |Val(X_i)|$

Overall cost of sampling is O(M n p log(d))

- To get the CPD entry for X given Pa_x, it costs O(p)
- Sampling process for $P(X|Pa_X)$ costs O(log(d))

11

Forward Sampling

How accurate is this estimate? Using the Hoeffding bound:

$$P_D(\hat{P}_D(y) \notin [P(y) - \varepsilon, P(y) + \varepsilon]) \le 2e^{-2M\varepsilon^2}$$

How many samples are required to achieve an estimate whose error is bounded by ε , with probability at least (1- δ)? Setting

$$2e^{-2M\varepsilon^2} \le \delta \text{ we get } M \ge \frac{\ln(2/\delta)}{2\varepsilon^2}$$

Forward Sampling

How accurate is this estimate? Using the Chernoff bound:

$$P_D(\hat{P}_D(y) \notin P(y)(1 \pm \varepsilon)) \le 2e^{-MP(y)\varepsilon^2/3}$$

Note: This requires us to know P(y)

How many samples are required to achieve an estimate whose error is bounded by ε , with probability at least $(1-\delta)$?

$$M \ge 3 \frac{\ln(2/\delta)}{P(\mathbf{y})\varepsilon^2}$$

13

Rejection Sampling

14

Rejection Sampling

What if we want to estimate P(y|E=e)?

• Rejection sampling: do forward sampling but throw out samples where *E≠e*

Example:

P(I=high|L=weak) = 1/3

D	I	G	S	L
low	low	В	low	weak
low	high	Α	high	strong
low	high	Α	high	weak
high	high	Α	high	strong
high	low	C	low	weak

15

Rejection Sampling

What if the evidence *E*=*e* is very very rare?

- For example, if P(e) = 0.001, then for 10,000 samples, we get 10 unrejected samples
- To obtain at least M* unrejected samples, we need to generate on average M = M*/P(e) samples
- If evidence is rare, we end up generating a lot of samples which wastes time

Rejection Sampling

Bad news:

- Rare evidence is the norm!
- As # of evidence variables k = |E| grows, the probability of the evidence decreases exponentially with k

Need something better than rejection sampling!

17

Likelihood Weighting

18

Likelihood Weighting

Intuition: Weight samples according to probability of the evidence

I P(I)
low 0.7
high 0.3

I	s	P(S I)
low	low	0.95
low	high	0.05
high	low	0.2
high	high	0.8

Drawing I = high and S = high should be 80% of a sample

Drawing I = low and S = high should be 5% of a sample

19

Likelihood Weighting

Weighted particles:

$$D = \langle \xi[1], w[1] \rangle, \dots, \langle \xi[M], w[M] \rangle$$

Estimate:

$$\hat{P}_{D}(y \mid e) = \frac{\sum_{m=1}^{M} w[m]I\{y[m] = y\}}{\sum_{m=1}^{M} w[m]}$$

Likelihood Weighting

```
Procedure LW-Sample(
                       // Bayesian network over {\mathcal X}
            Z=z
                     // Event in the network
       Let X_1, ..., X_n be a topological ordering of X
       w \leftarrow 1
3.
       for i = 1, ..., n
                                   // Assignment to Pa_{Xi} in x_1, ..., x_{i-1}
          \mathbf{u_i} \leftarrow \mathbf{x} < \mathsf{Pa}_{\mathsf{Xi}} >
          if X<sub>i</sub> ∉Z then
           Sample x_i from P(X_i | u_i)
6.
            x_i \leftarrow \mathbf{z} < X_i > // Assignment to X_i in \mathbf{z}
           w \leftarrow w \cdot P(x_i \mid u_i) // Multiply weight by probability of desired value
          return (x_1, ..., x_n), w
                                                                                                       21
```