Approximate Inference 2:
Importance Sampling

(Unnormalized) Importance
Sampling




(Unnormalized) Importance
Sampling

 Likelihood weighting is a special case of a
general approach called importance
sampling

» Let X be a set of variables that takes on
values in some space Val(X)

* Importance sampling is a way to estimate
Epwlf(X)] ie. the expectation of a function
f(xs relative to some distribution P(X),

typically called the target distribution

(Unnormalized) Importance
Sampling
» Generate samples x[1], ..., X[M] from P
« Then estimate:

E[F]~ -5 f (x[m])
M 4




(Unnormalized) Importance
Sampling

Sometimes you might want to generate samples from a
different distribution Q (called a proposal distribution or
sampling distribution)
Why?

— Might be impossible or computationally expensive to

sample from P
Proposal distribution can be arbitrary
— Require that Q(x) > 0 whenever P(x) > 0

— But computational performance of importance
sampling depends strongly on how similar Q is to P

(Unnormalized) Importance
Sampling
How to use the proposal distribution:

P(X) P(x)
f(X
Q‘X){ ( )Q(X)} EQ( )T )Q()

= > F(X)P(X) = Ep [ (X)]

Generate a set of samples D = {x[1], ..., x[M]}

from Q then estimate: _
Unnormalized

Z f (x[m]) —tM) P(x[m]) importance sampling

E (f)= .
D( ) i Q(X[m]) estimator




(Unnormalized) Importance
Sampling

This estimator is unbiased:

= _ P(X)
Eo[Ep(f)]=Equ[T(X) Q(X)]

= Equi [ T (X)W(X)] = Ep [T (X)]

Normalized Importance
Sampling




Normalized Importance Sampling

* Frequently, P is known only up to a normalizing
constant Z ie.

P(X)=ZP(X)

» Happens when:
— We know P(X,e) but need P(X|e)

— We have the unnormalized product of clique
potentials for a Markov network

Normalized Importance Sampling

» Define
Q(X)
» The expected value of the w(X) under

Q(X) is

Equo[W(X)]= ZQ()P(X) Zﬁ(x)zz

Q) =




Normalized Importance Sampling
Epoo[f(X)1=2_P(x)f(x)

P(x)
Q(x)

1 PO _15
=2 2R TG (ince P =2 P(x)

=2 Q(x) f(x)

=2 Equl F (XWX

_ Eoui [T (X)W(X)]
E g [W(X)]

Normalized Importance Sampling

With M samples D = {x[1], ..., X[M]} from Q,
we can estimate:

X fImDw(xm])
Eo(f)=""

M

ZW(X[m])

This is called the normalized importance
sampling estimator or weighted
importance sampling estimator




Normalized Importance Sampling

» Normalized importance sampling estimator
is biased

e But has smaller variance than the
unnormalized estimator

* Normalized estimator often used instead
of unnormalized estimator, even when P is
known and can be sampled from
effectively

Importance Sampling for
Bayesian Networks




Importance Sampling for Bayesian

Networks

Student Example I )
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Importance Sampling for Bayesian
Networks

» What proposal distribution do we use?

e Suppose we want an event Grade=B either as a
query or as evidence
— Easy to sample P(Letter | Grade = B)

— Difficult to account for Grade=B's influence on
Difficulty, Intelligence and SAT

* In general:

— Want to account for effect of the event on the
descendants

— But avoid accounting for its effects on the
nondescendants




Importance Sampling for Bayesian
Networks

* Let B be a network, and Z, = z,, ..., Z, = z,,
abbreviated Z=z, an instantiation of variables.

* We define the mutilated network B._, as follows:
— Each node Z; € Z has no parents in B,_,
— The CPD of Z; in B,_, gives probability 1 to Z, = z; and
probability O to all other values z; € Val(Z,)

— The parents and CPDs of all other nodes X ¢ Z are
unchanged

Importance Sampling for Bayesian
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Importance Sampling for Bayesian
Networks

* Proposition 12.2: Let § be a sample generated
by Likelihood Weighting and w be its weight.
Then the distribution over & is as defined by the
network B,_,, and

=52k

* (Informally) Importance sampling using a
mutilated network as a proposal distribution is
equivalent to Likelihood Weighting with Pg(X,z)
and proposal distribution Q induced by the
mutilated network Bg_..

Likelihood Weighting
Revisited
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Likelihood Weighting Revisited

Two versions of likelihood weighting
1. Ratio Likelihood Weighting
2. Normalized Likelihood Weighting

Likelihood Weighting Revisited

Ratio Likelihood Weighting

P(yle) =g

Use unnormalized importance sampling:

1. For numerator — use LW to generate M samples with
Y=y, E=e as the event

2. For denominator — use LW to generate M’ samples
with E=e as the event

1 M
Py(yle)= Po(y.€) _ 'V'Ziw[m]
D FA)D'(e) 1%w‘[m]
M &~
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Likelihood Weighting Revisited

Normalized Likelihood Weighting

» Ratio Likelihood Weighting estimates a single
query P(y|e) from a set of samples (ie. it sets
Y=y when sampling)

» Sometimes we want to evaluate a set of queries
P(yle)

» Use normalized likelihood weighting with

P(X)=Py(X.e)
» Estimate the expectation of a function f:

f(&)=1&Y)=v}

Likelihood Weighting Revisited

Quiality of importance sampling depends on
how close the proposal distribution Q is to
the target distribution P.

Consider the two extremes:

1. All evidence at the roots:
— Proposal distribution is the posterior

— Evidence affects samples all along the way
and all samples have the same weight P(e)
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Likelihood Weighting Revisited

2. All evidence at the leaves:
— Proposal distribution is the prior distribution
Px(X)
— Evidence doesn’t affect samples, weights

have to compensate. LW will only work well
if prior is similar to the posterior

Likelihood Weighting Revisited

P(X)=Y P(e)P(X |e)
—— "

Prior Posterior

 If P(e) is high, then the posterior P(X|e) plays a
large role and is close to the prior P(X)

» If P(e) is low, then the posterior P(X|e) plays a
small role and the prior P(X) will likely look very
different
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Likelihood Weighting Revisited

Summary
Ratio Likelihood Weighting

e Computes P(y|e) for a specific y (ie. values for y
are set)

» Uses unnormalized importance sampling for
both numerator and denominator in P(y,e)/P(e)

* Needs a new set of samples for each query y
» Lower variance in estimator

e Can bound # of samples required for a good
estimate (but under strong conditions)

Likelihood Weighting Revisited

Summary
Normalized Likelihood Weighting

o Samples an assignment for Y, which
introduces additional variance

» Allows multiple queries y using the same
set of samples (conditioned on evidence
e)
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Likelihood Weighting Revisted

Problems with Likelihood Weighting:

* If there are a lot of evidence variables P(Y | E; =
€1, .- E = €)):
— Many samples will have & weight

— Weighted estimate dominated by a small
fraction of samples that have > ¢

» If evidence variables occur in the leaves, the
samples drawn will not be affected much by the
evidence

15



