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Bayesian Networks 1:
Introduction
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Bayesian Networks

Goal: represent a joint distribution over random variables 
, … ,

,

false false 0.1

false true 0.2

true false 0.3

true true 0.4
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Bayesian Networks

• If variables are binary, the joint distribution has 2 1
probabilities

– Expensive space usage

– Human expert has hard time determining these 
numbers

– Need large amounts of data to estimate these 
numbers accurately

• How do we represent a joint probability distribution 
compactly?

– Solution: Exploit independence properties
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Bayesian Networks

• Suppose we toss coins and let be the 
outcome of coin toss 

• The joint distribution , … , has 2
1 parameters
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Bayesian Networks

• Now assume the coin tosses are marginally 
independent ie. for any ,

• The joint distribution , … ,
…

false 1

true

For each , we have the following table:

There are only 	parameters , … , to specify!
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The Conditional Parameterization

• Define 2 random variables: Intelligence (I) 
and SAT score (S)

• We could represent the joint distribution as 
follows:

,

low low 0.665

low high 0.035

high low 0.06

high high 0.24
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The Conditional Parameterization
• An alternative representation: ,

|
• Note: represents the causal process i.e. 

intelligence affects SAT score

|

low low 0.95

low high 0.05

high low 0.2

high high 0.8

low 0.7

high 0.3

Prior distribution over 

Conditional probability 
distribution of given 7

The Conditional Parameterization

|

low low 1 |

low high |

high low 1 |

high high |

low 1

high

• There are 3 binomial distributions here: 
, , |

• Only 3 independent parameters are needed: 
, | , |
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The Conditional Parameterization

The joint distribution (conditional parameterization 
version) drawn as a Bayesian network looks like:

Intelligence

SAT

, |

9

Naïve Bayes
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Naïve Bayes

• Now assume we have 3 random variables:
– Intelligence: low, high

– SAT score: low, high

– Grade: A, B, C

• No independencies that hold:
– Intelligence correlated with SAT score and 

grade

– SAT score and grade not independent
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Naïve Bayes

• But conditional independencies hold!

• If a student has high intelligence, a high SAT 
score no longer gives us information about the 
student’s grade

• Formally: |

and are conditionally 
independent given 

Note: This is only true if intelligence is the only reason by 
his grade and SAT score might be correlated 12
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Naïve Bayes

• This leads to the following factored representation:

, , ,

There are 3 binomial distributions:

– with parameter:  

– | with parameter: |

– | with parameter: |

• And 2 three-valued multinomial distributions:

– with parameters: | , |

– | with parameters: | , |

[As before]

[Conditional independence: 
, |

7 vs 11 independent parameters for a full joint distribution 13

Naïve Bayes
|

low low 1 |

low high |

high low 1 |

high high |

low 1

high

|

low C 1 | |

low B |

low A |

high C 1 | |

high B |

high A |

Intelligence

Grade SAT
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Naïve Bayes

Class

. . .

Instances fall into one of 
mutually exclusive and 

exhaustive classes

Features: characteristics of 
the instances that help 

predict the class. These are 
typically observed.

Naïve Bayes assumption: features 
are conditionally independent given 
the instance’s class ie.

| for all 

where , … ,
15

Naïve Bayes

Based on these assumptions, the joint 
distribution factorizes as:

, , … , |

If all the variables are binary, there are a total of 2
1 independent parameters needed to specify the naive 
Bayes model
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Bayesian Networks
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Bayesian Network

A Bayesian network is composed of:

• The DAG structure

• The conditional probability distributions in 
each node
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Bayesian Networks

• A Bayesian network is represented as a Directed 
Acyclic Graph (DAG) G
– Nodes are random variables
– Edges correspond to the direct influence of one 

random variable on another
• G can be viewed in two different ways:

– The skeleton for a compact, factored representation 
of a joint distribution 

– A compact representation for a set of conditional 
independence assumptions about a distribution

• Both are equivalent

19

Bayesian Networks

Intelligence

Grade SAT

Difficulty

Letter

DAG Structure: intuitively, 
each variable depends 
directly only on its parents 20
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Bayesian Networks

Intelligence

Grade SAT

Difficulty

Letter

D P(D)

low 0.6

high 0.4

I P(I)

low 0.7

high 0.3

I S P(S|I)

low low 0.95

low high 0.05

high low 0.2

high high 0.8

G L P(L|G)

C weak 0.99

C strong 0.01

B weak 0.4

B strong 0.6

A weak 0.1

A strong 0.9

D I G P(G|D,I)

low low C 0.3

low low B 0.4

low low A 0.3

low high C 0.02

low high B 0.08

low high A 0.9

high low C 0.7

high low B 0.25

high low A 0.05

high high C 0.2

high high B 0.3

high high A 0.5
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Bayesian Networks

Each node has a local probability model 

• Captures the conditional probability distribution 
of the node given its parents ie.  

|
• Specifies a distribution over each value of 

given each possible joint assignment of values 
to its parents

• A node with no parents eg. is conditioned 
on the empty set of variables and is a marginal 
distribution
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Bayesian Networks

With a Bayesian network, you can compute 
the value of any state of the joint 
probability distribution

004608.04.0*8.0*08.0*6.0*3.0
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BGweakLPhighIhighSP

lowDhighIBGPlowDPhighIP

weakLhighSBGlowDhighIP

This uses the chain rule for Bayesian networks (more 
on this later)
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